Affiliation:
1. A State Key Laboratory of Power Systems Department of Electrical Engineering Tsinghua University Beijing 100084 China
Abstract
AbstractThe growing need for high‐power and compact‐size energy storage in modern electronic and electrical systems demands polymer film capacitors with excellent temperature capability. However, conventional polymer dielectrics feature dramatic deterioration in capacitive performance under concurrent high temperature and electric field because the high thermal stability traditionally relies on the conjugated, planar molecular segments in the polymer chains. Herein, inspired by the stable double helix structures of deoxyribonucleic acid, spiral‐structured dielectric polymers that exhibit simultaneous high thermal stability and great capacitive performance are demonstrated. Both the experimental results and computational simulations confirm that the spiral groups serve to weaken the electrostatic molecular interaction, induce proper molecular chain stacking structure, and regulate the charge transfer process by breaking the conjugated planes and introducing deep trap sites. The resultant polymer exhibits the maximum discharged energy densities of 7.29 and 6.13 J cm−3 with the charge–discharge efficiency above 90% at 150 and 200 °C, respectively, more than ten times those of the original dielectric at the same conditions. Here a completely new dimension is offered for the molecular design of polymers, giving rise to well‐balanced thermal and dielectric properties, and ultimately the desired capacitive energy storage performance at high temperatures.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献