Sulfide‐Bridged Covalent Quinoxaline Frameworks for Lithium–Organosulfide Batteries

Author:

Haldar Sattwick1ORCID,Bhauriyal Preeti2ORCID,Ramuglia Anthony R.3,Khan Arafat H.4ORCID,De Kock Sunel5ORCID,Hazra Arpan1ORCID,Bon Volodymyr1ORCID,Pastoetter Dominik L.6ORCID,Kirchhoff Sebastian7,Shupletsov Leonid1ORCID,De Ankita1ORCID,Isaacs Mark A.89ORCID,Feng Xinliang6ORCID,Walter Michael5ORCID,Brunner Eike4ORCID,Weidinger Inez M.3ORCID,Heine Thomas2ORCID,Schneemann Andreas1ORCID,Kaskel Stefan17ORCID

Affiliation:

1. Chair of Inorganic Chemistry I Technische Universität Dresden 01069 Dresden Germany

2. Chair of Theoretical Chemistry Technische Universität Dresden 01069 Dresden Germany

3. Chair of Electrochemistry Technische Universität Dresden 01069 Dresden Germany

4. Chair of Bioanalytical Chemistry Technische Universität Dresden 01069 Dresden Germany

5. FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies Georges‐Köhler‐Allee 105 79110 Freiburg Germany

6. Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01069 Dresden Germany

7. Fraunhofer Institute for Material and Beam Technology (IWS) Winterbergstraße 28 01277 Dresden Germany

8. Department of Chemistry University College London London WC1H 0AJ UK

9. HarwellXPS Research Complex at Harwell Rutherford Appleton Laboratories Didcot OX11 0FA UK

Abstract

AbstractThe chelating ability of quinoxaline cores and the redox activity of organosulfide bridges in layered covalent organic frameworks (COFs) offer dual active sites for reversible lithium (Li)‐storage. The designed COFs combining these properties feature disulfide and polysulfide‐bridged networks showcasing an intriguing Li‐storage mechanism, which can be considered as a lithium–organosulfide (Li–OrS) battery. The experimental–computational elucidation of three quinoxaline COFs containing systematically enhanced sulfur atoms in sulfide bridging demonstrates fast kinetics during Li interactions with the quinoxaline core. Meanwhile, bilateral covalent bonding of sulfide bridges to the quinoxaline core enables a redox‐mediated reversible cleavage of the sulfursulfur bond and the formation of covalently anchored lithium–sulfide chains or clusters during Li‐interactions, accompanied by a marked reduction of Li–polysulfide (Li–PS) dissolution into the electrolyte, a frequent drawback of lithium–sulfur (Li–S) batteries. The electrochemical behavior of model compounds mimicking the sulfide linkages of the COFs and operando Raman studies on the framework structure unravels the reversibility of the profound Li‐ion–organosulfide interactions. Thus, integrating redox‐active organic‐framework materials with covalently anchored sulfides enables a stable Li–OrS battery mechanism which shows benefits over a typical Li–S battery.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3