Efficient CO2 Electroreduction to Multicarbon Products at CuSiO3/CuO Derived Interfaces in Ordered Pores

Author:

Li Qun1,Wu Jiabin2,Lv Lei3,Zheng Lirong4,Zheng Qiang5,Li Siyang1,Yang Caoyu1,Long Chang6,Chen Sheng1,Tang Zhiyong1ORCID

Affiliation:

1. CAS Key Laboratory for Nanosystem and Hierarchy Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China

2. Department of Chemistry Tsinghua University Beijing 100084 P. R. China

3. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan Hubei 430070 P. R. China

4. Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China

5. CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Centre for Nanoscience and Technology Beijing 100190 P. R. China

6. Lab of Molecular Electrochemistry Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 P. R. China

Abstract

AbstractElectrochemical CO2 conversion to value‐added multicarbon (C2+) chemicals holds promise for reducing CO2 emissions and advancing carbon neutrality. However, achieving both high conversion rate and selectivity remains challenging due to the limited active sites on catalysts for carbon–carbon (C─C) coupling. Herein, porous CuO is coated with amorphous CuSiO3 (p‐CuSiO3/CuO) to maximize the active interface sites, enabling efficient CO2 reduction to C2+ products. Significantly, the p‐CuSiO3/CuO catalyst exhibits impressive C2+ Faradaic efficiency (FE) of 77.8% in an H‐cell at −1.2 V versus reversible hydrogen electrode in 0.1 M KHCO3 and remarkable C2H4 and C2+ FEs of 82% and 91.7% in a flow cell at a current density of 400 mA cm−2 in 1 M KOH. In situ characterizations and theoretical calculations reveal that the active interfaces facilitate CO2 activation and lower the formation energy of the key intermediate *OCCOH, thus promoting CO2 conversion to C2+. This work provides a rational design for steering the active sites toward C2+ products.

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3