Affiliation:
1. Key Laboratory of Materials Physics of Ministry of Education School of Physics and Microelectronics Zhengzhou University Daxue Road 75 Zhengzhou 450052 China
Abstract
AbstractPerovskite quantum dots (QDs) have been considered new‐generation emitters for lighting and displays due to their high photoluminescence (PL) efficiency, and pure color. However, their commercialization process is currently hindered by the challenge of mass production in a quick and environmentally friendly manner. In this study, a polymer‐surface‐mediated mechanochemical reaction (PMR) is proposed to prepare perovskite QDs using a high‐speed multifunction grinder for the first time. PMR possesses two distinctive features: i) The ultra‐high rotating speed (>15 000 rpm) of the grinder facilitates the rapid conversion of the precursor to perovskite; ii) The surface‐rich polymer particulate ensures QDs with high dispersity, avoiding QD aggregation‐induced PL quenching. Therefore, PMR can successfully manufacture green perovskite QDs with a high PL quantum yield (PLQY) exceeding 90% in a highly material‐ (100% yield), time‐ (1 kg min−1), and effort‐ (solvent‐free) efficient manner. Moreover, the PMR demonstrates remarkable versatility, including synthesizing by various polymers and producing diverse colored and Pb‐free phosphors. Importantly, these phosphors featuring a combination of polymer and perovskite, are facilely processed into various solid emitters. The proposed rapid, green, and scalable approach has great potential to accelerate the commercialization of perovskite QDs.
Funder
National Natural Science Foundation of China
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献