Polymer‐Surface‐Mediated Mechanochemical Reaction for Rapid and Scalable Manufacture of Perovskite QD Phosphors

Author:

Zhang Kaishuai1,Fan Wenxuan1,Yao Tianliang1,Wang Shalong1,Yang Zhi1,Yao Jisong1,Xu Leimeng1,Song Jizhong1ORCID

Affiliation:

1. Key Laboratory of Materials Physics of Ministry of Education School of Physics and Microelectronics Zhengzhou University Daxue Road 75 Zhengzhou 450052 China

Abstract

AbstractPerovskite quantum dots (QDs) have been considered new‐generation emitters for lighting and displays due to their high photoluminescence (PL) efficiency, and pure color. However, their commercialization process is currently hindered by the challenge of mass production in a quick and environmentally friendly manner. In this study, a polymer‐surface‐mediated mechanochemical reaction (PMR) is proposed to prepare perovskite QDs using a high‐speed multifunction grinder for the first time. PMR possesses two distinctive features: i) The ultra‐high rotating speed (>15 000 rpm) of the grinder facilitates the rapid conversion of the precursor to perovskite; ii) The surface‐rich polymer particulate ensures QDs with high dispersity, avoiding QD aggregation‐induced PL quenching. Therefore, PMR can successfully manufacture green perovskite QDs with a high PL quantum yield (PLQY) exceeding 90% in a highly material‐ (100% yield), time‐ (1 kg min−1), and effort‐ (solvent‐free) efficient manner. Moreover, the PMR demonstrates remarkable versatility, including synthesizing by various polymers and producing diverse colored and Pb‐free phosphors. Importantly, these phosphors featuring a combination of polymer and perovskite, are facilely processed into various solid emitters. The proposed rapid, green, and scalable approach has great potential to accelerate the commercialization of perovskite QDs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3