A New Zinc Salt Chemistry for Aqueous Zinc‐Metal Batteries

Author:

Du Haoran12,Dong Yanhao3,Li Qing‐Jie4,Zhao Ruirui2,Qi Xiaoqun1,Kan Wang‐Hay5,Suo Liumin6,Qie Long1,Li Ju47ORCID,Huang Yunhui1

Affiliation:

1. State Key Laboratory of Material Processing and Die and Mold Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 China

2. Institute of New Energy for Vehicles School of Materials Science and Engineering Tongji University 201804 Shanghai China

3. State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University 100084 Beijing China

4. Department of Nuclear Science and Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA

5. China Spallation Neutron Source Chinese Academy of Science Dongguan Guangdong 523890 China

6. Beijing Advanced Innovation Center for Materials Genome Engineering Key Laboratory for Renewable Energy Beijing Key Laboratory for New Energy Material and Devices Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Science 100190 Beijing China

7. Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA

Abstract

AbstractAqueous zinc‐ion batteries (ZIBs) are promising energy storage solutions with low cost and superior safety, but they suffer from chemical and electrochemical degradations closely related to the electrolyte. Here, a new zinc salt design and a drop‐in solution for long cycle‐life aqueous ZIBs are reported. The salt Zn(BBI)2 with a rationally designed anion group, N‐(benzenesulfonyl)benzenesulfonamide (BBI), has a special amphiphilic molecular structure, which combines the benefits of hydrophilic and hydrophobic groups to properly tune the solubility and interfacial condition. This new zinc salt does not contain fluorine and is synthesized via a high‐yield and low‐cost method. It is shown that 1 m Zn(BBI)2 aqueous electrolyte with a widened cathodic stability window effectively stabilizes Zn metal/H2O interface, mitigates chemical and electrochemical degradations, and enables both symmetric and full cells using a zinc‐metal electrode.

Funder

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3