Tailoring Oxygen Reduction Reaction Kinetics of Fe−N−C Catalyst via Spin Manipulation for Efficient Zinc–Air Batteries

Author:

Zhang Huiwen1,Chen Hsiao‐Chien2,Feizpoor Solmaz1,Li Linfeng1,Zhang Xia1,Xu Xuefei1,Zhuang Zechao3,Li Zhishan4,Hu Wenyu5,Snyders Rony6,Wang Dingsheng3ORCID,Wang Chundong1ORCID

Affiliation:

1. School of Integrated Circuits Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 P. R. China

2. Center for Reliability Science and Technologies Center for Sustainability and Energy Technologies Chang Gung University Taoyuan 33302 Taiwan

3. Department of Chemistry Tsinghua University Beijing 100084 P. R. China

4. Faculty of Metallurgical and Energy Engineering State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Kunming University of Science and Technology Kunming 650093 P. R. China

5. Department of Physics Southern University of Science and Technology ShenZhen 518055 P. R. China

6. Chimie des Interactions Plasma Surfaces (ChIPS) University of Mons 7000 Mons, Belgium; Materia Nova Research Center Mons B‐7000 Belgium

Abstract

AbstractThe interaction between oxygen species and metal sites of various orbitals exhibits intimate correlation with the oxygen reduction reaction (ORR) kinetics. Herein, a new approach for boosting the inherent ORR activity of atomically dispersed Fe−N−C matrix is represented by implanting Fe atomic clusters nearby. The as‐prepared catalyst delivers excellent ORR activity with half‐wave potentials of 0.78 and 0.90 V in acidic and alkaline solutions, respectively. The decent ORR activity can also be validated from the high‐performance rechargeable Zn–air battery. The experiments and density functional theory calculations reveal that the electron spin‐state of monodispersed Fe active sites is transferred from the low spin (LS, t2g6 eg0) to the medium spin (MS, t2g5 eg1) due to the involvement of Fe atomic clusters, leading to the spin electron filling in σ∗ orbit, by which it favors OH desorption and in turn boosts the reaction kinetics of the rate‐determining step. This work paves a solid way for rational design of high‐performance Fe‐based single atom catalysts through spin manipulation.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

Chang Gung University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3