Engineered Probiotic Bio‐Heterojunction with Robust Antibiofilm Modality via “Eating” Extracellular Polymeric Substances for Wound Regeneration

Author:

Qin Miao1,Zhang Xiumei1,Ding Haiyang2,Chen Yanbai2,He Wenxuan2,Wei Yan13,Chen Weiyi13,Chan Yau Kei4,Shi Yiwei5,Huang Di13,Deng Yi246ORCID

Affiliation:

1. Research Center for Nano‐Biomaterials & Regenerative Medicine Department of Biomedical Engineering College of Biomedical Engineering Taiyuan University of Technology Taiyuan 030024 China

2. School of Chemical Engineering Sichuan University Chengdu 610065 China

3. Shanxi‐Zheda Institute of Advanced Materials and Chemical Engineering Taiyuan 030060 China

4. Department of Mechanical Engineering The University of Hong Kong Hong Kong 999077 China

5. NHC Key Laboratory of Pneumoconiosis Shanxi Key Laboratory of Respiratory Diseases Department of Pulmonary and Critical Care Medicine The First Hospital of Shanxi Medical University Taiyuan 030001 China

6. State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China

Abstract

AbstractThe compact three‐dimensional (3D) structure of extracellular polymeric substances (EPS) within biofilms significantly hinders the penetration of antimicrobial agents, making biofilm eradication challenging and resulting in persistent biofilm‐associated infections. To address this challenge, a solution is proposed: a probiotic bio‐heterojunction (P‐bioHJ) combining Lactobacillus rhamnosus with MXene (Ti3C2) quantum dots (MQDs)/FeS heterojunction. This innovation aims to break down the saccharides in EPS, enabling effective combat against biofilm‐associated infections. Initially, the P‐bioHJ targets saccharides through metabolic processes, causing the collapse of EPS and allowing infiltration into bacterial colonies. Simultaneously, upon exposure to near‐infrared (NIR) irradiation, the P‐bioHJ produces reactive oxygen species (ROS) and thermal energy, deploying physical mechanisms to combat bacterial biofilms effectively. Following antibiofilm treatment, the P‐bioHJ adjusts the oxidative environment, reduces wound inflammation by scavenging ROS, boosts antioxidant enzyme activity, and mitigates the NF‐κB inflammatory pathway, thereby accelerating wound healing. In vitro and in vivo experiments confirm the exceptional antibiofilm, antioxidant/anti‐inflammatory, and wound‐regeneration properties of P‐bioHJ. In conclusion, this study provides a promising approach for treating biofilm‐related infections.

Funder

Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intrinsically Flexible Phase Change Fibers for Intelligent Thermal Regulation;Angewandte Chemie International Edition;2024-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3