High‐Throughput Area‐Selective Spatial Atomic Layer Deposition of SiO2 with Interleaved Small Molecule Inhibitors and Integrated Back‐Etch Correction for Low Defectivity

Author:

Karasulu Bora1ORCID,Roozeboom Fred2ORCID,Mameli Alfredo3ORCID

Affiliation:

1. Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK

2. Faculty of Science and Technology University of Twente HENGELOSESTRAAT Enschede 7500 AE The Netherlands

3. TNO‐Holst Centre High Tech Campus 31 Eindhoven 6565 AE The Netherlands

Abstract

AbstractA first‐of‐its‐kind area‐selective deposition process for SiO2 is developed consisting of film deposition with interleaved exposures to small molecule inhibitors (SMIs) and back‐etch correction steps, within the same spatial atomic layer deposition (ALD) tool. The synergy of these aspects results in selective SiO2 deposition up to ~23 nm with high selectivity and throughput, with SiO2 growth area and ZnO nongrowth area. The selectivity is corroborated by both X‐ray photoelectron spectroscopy (XPS) and low‐energy ion scattering spectroscopy (LEIS). The selectivity conferred by two different SMIs, ethylbutyric acid, and pivalic acid has been compared experimentally and theoretically. Density Functional Theory (DFT) calculations reveal that selective surface functionalization using both SMIs is predominantly controlled thermodynamically, while the better selectivity achieved when using trimethylacetic acid can be explained by its higher packing density compared to ethylbutyric acid. By employing the trimethylacetic acid as SMI on other starting surfaces (Ta2O5, ZrO2, etc.) and probing the selectivity, a broader use of carboxylic acid inhibitors for different substrates is demonstrated. It is believed that the current results highlight the subtleties in SMI properties such as size, geometry, and packing, as well as interleaved back‐etch steps, which are key in developing ever more effective strategies for highly selective deposition processes.

Funder

University of Warwick

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3