Affiliation:
1. State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
2. School of Chemistry and Chemical Engineering State Key Laboratory Incubation Base for Green Processing of Chemical Engineering Shihezi University Shihezi 832003 China
3. Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Yantai 264006 China
Abstract
AbstractShaping ceramic materials into sophisticated architecture with 3D hierarchical structure is desirable in multiapplication yet remains challenge due to their brittle and stiff nature. Herein, a new method to achieve ceramic architectures with unsupported and large‐spanning structure by shaping vat photopolymerization 3D printed hydrogel preceramic skeleton with unique flexible and deformable character is proposed. Specifically, the present photopolymerizable hydrogel preceramic achieves one stone, two birds: the photosensitive polymer matrix coupled with ceramic nanoparticles for the first shaping by vat photopolymerization 3D printing and the secondary plasticity of the 3D printed ceramic body through flexible shape deformation of hydrogel networks. Inorganic binder aluminum dihydrogen phosphate serves as hydrogel dispersion medium to achieve ultralow shrinkage photopolymerization ceramic. Compared with conventional polymer‐derived photocuring ceramics, the linear shrinkage of lamina structure is solely 2%, and which of cubic ceramic structure is just 13.3%. More importantly, one 3D printed preceramic is conducted to reshape repeatedly myriad constructions, realizing reusability of intrinsic brittle ceramic, improving manufacturing fault tolerance rate. Finally, a variety of paradigms for ceramic structure applications are proposed toward stereo circuit, biomedicine, and catalytic applications, breaking the limitation of intrinsic brittleness of ceramic in high‐precision manufacturing of complex ceramic devices.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China