Tunable 2D Electron‐ and 2D Hole States Observed at Fe/SrTiO3 Interfaces

Author:

Düring Pia M.1,Rosenberger Paul12ORCID,Baumgarten Lutz3,Alarab Fatima4,Lechermann Frank5,Strocov Vladimir N.4,Müller Martina1ORCID

Affiliation:

1. Fachbereich Physik Universität Konstanz 78457 Konstanz Germany

2. Fakultät Physik Technische Universität Dortmund 44221 Dortmund Germany

3. Forschungszentrum Jülich GmbH Peter Grünberg Institut (PGI‐6) 52425 Jülich Germany

4. Paul Scherrer Institute Swiss Light Source Villingen PSI CH‐5232 Switzerland

5. Institut für Theoretische Physik III Ruhr‐Universität Bochum 44780 Bochum Germany

Abstract

AbstractOxide electronics provide the key concepts and materials for enhancing silicon‐based semiconductor technologies with novel functionalities. However, a basic but key property of semiconductor devices still needs to be unveiled in its oxidic counterparts: the ability to set or even switch between two types of carriers—either negatively (n) charged electrons or positively (p) charged holes. Here, direct evidence for individually emerging n‐ or p‐type 2D band dispersions in STO‐based heterostructures is provided using resonant photoelectron spectroscopy. The key to tuning the carrier character is the oxidation state of an adjacent Fe‐based interface layer: For Fe and FeO, hole bands emerge in the empty bandgap region of STO due to hybridization of Ti‐ and Fe‐ derived states across the interface, while for Fe3O4 overlayers, an 2D electron system is formed. Unexpected oxygen vacancy characteristics arise for the hole‐type interfaces, which as of yet had been exclusively assigned to the emergence of 2DESs. In general, this finding opens up the possibility to straightforwardly switch the type of conductivity at STO interfaces by the oxidation state of a redox overlayer. This will extend the spectrum of phenomena in oxide electronics, including the realization of combined n/p‐type all‐oxide transistors or logic gates.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3