Overcoming Barriers Associated with Oral Delivery of Differently Sized Fluorescent Core‐Shell Silica Nanoparticles

Author:

Erstling Jacob A.12ORCID,Bag Nirmalya3ORCID,Gardinier Thomas C.1ORCID,Kohle Ferdinand F. E.13ORCID,DomNwachukwu Naedum2ORCID,Butler Scott D.4,Kao Teresa1ORCID,Ma Kai1,Turker Melik Z.1ORCID,Feuer Grant B.2,Lee Rachel1ORCID,Naguib Nada12ORCID,Tallman James F.1,Malarkey Henry F.5,Tsaur Lieihn1ORCID,Moore William L.1,Chapman Dana V.1ORCID,Aubert Tangi1ORCID,Mehta Saurabh6ORCID,Cerione Richard A.3ORCID,Weiss Robert S.4ORCID,Baird Barbara A.3ORCID,Wiesner Ulrich B.17ORCID

Affiliation:

1. Department of Materials Science and Engineering Cornell University Ithaca NY 14853 USA

2. Department of Biomedical Engineering Cornell University Ithaca NY 14853 USA

3. Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA

4. Department of Biomedical Sciences Cornell University Ithaca NY 14853 USA

5. Department of Applied and Engineering Physics Cornell University Ithaca NY 14853 USA

6. Center for Precision Nutrition and Health Division of Nutritional Sciences Cornell University Ithaca NY 14853 USA

7. Kavli Institute at Cornell for Nanoscale Science Cornell University Ithaca NY 14853 USA

Abstract

AbstractOral delivery, while a highly desirable form of nanoparticle‐drug administration, is limited by challenges associated with overcoming several biological barriers. Here, the authors study how fluorescent and poly(ethylene glycol)‐coated (PEGylated) core‐shell silica nanoparticles sized 5 to 50 nm interact with major barriers including intestinal mucus, intestinal epithelium, and stomach acid. From imaging fluorescence correlation spectroscopy studies using quasi‐total internal reflection fluorescence microscopy, diffusion of nanoparticles through highly scattering mucus is progressively hindered above a critical hydrodynamic size around 20 nm. By studying Caco‐2 cell monolayers mimicking the intestinal epithelia, it is observed that ultrasmall nanoparticles below 10 nm diameter (Cornell prime dots, [C’ dots]) show permeabilities correlated with high absorption in humans from primarily enhanced passive passage through tight junctions. Particles above 20 nm diameter exclusively show active transport through cells. After establishing C’ dot stability in artificial gastric juice, in vivo oral gavage experiments in mice demonstrate successful passage through the body followed by renal clearance without protein corona formation. Results suggest C’ dots as viable candidates for oral administration to patients with a proven pathway towards clinical translation and may generate renewed interest in examining silica as a food additive and its effects on nutrition and health.

Funder

U.S. Department of Energy

National Cancer Institute

National Institutes of Health

National Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3