Laser‐Induced Electron Synchronization Excitation for Photochemical Synthesis and Patterning Graphene‐Based Electrode

Author:

Yuan Yongjiu12345,Huang Junhao123,Li Xin123ORCID,Jiang Lan123,Li Tong45,Sun Pengcheng4,Yin Yingying4,Wang Sumei123,Cheng Qian123,Xu Wanghuai45,Qu Liangti6,Wang Steven4

Affiliation:

1. Laser Micro/Nano‐Fabrication Laboratory School of Mechanical Engineering Beijing Institute of Technology Beijing 10081 China

2. Yangtze Delta Region Academy of Beijing Institute of Technology Jiaxing 314000 China

3. Beijing Institute of Technology Chongqing Innovation Center Chongqing 401120 China

4. Department of Mechanical Engineering City University of Hong Kong Hong Kong 999077 China

5. Department of Mechanical Engineering The Hong Kong Polytechnic University Hong Kong 999077 China

6. MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Department of Chemistry Tsinghua University Beijing 100084 China

Abstract

AbstractMicro‐supercapacitors (MSCs) represent a pressing requirement for powering the forthcoming generation of micro‐electronic devices. The simultaneous realization of high‐efficiency synthesis of electrode materials and precision patterning for MSCs in a single step presents an ardent need, yet it poses a formidable challenge. Herein, a unique shaped laser‐induced patterned electron synchronization excitation strategy has been put forward to photochemical synthesis RuO2/reduced graphene oxide (rGO) electrode and simultaneously manufacture the micron‐scale high‐performance MSCs with ultra‐high resolution. Significantly, the technique represents a noteworthy advancement over traditional laser direct writing (LDW) patterning and photoinduced synthetic electrode methods. It not only improves the processing efficiency for MSCs and the controllability of laser‐induced electrode material but also enhances electric fields and potentials at the interface for better electrochemical performance. The resultant MSCs exhibit excellent area and volumetric capacitance (516 mF cm−2 and 1720 F cm−3), and ultrahigh energy density (0.41 Wh cm−3) and well‐cycle stability (retaining 95% capacitance after 12000 cycles). This investigation establishes a novel avenue for electrode design and underscores substantial potential in the fabrication of diverse microelectronic devices.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3