Kornblum Oxidation Reaction‐Induced Collective Transformation of Lead Polyhalides for Stable Perovskite Photovoltaics

Author:

Wang Zhen1,Cao Xuejing1,Yang Heng1,Kuang Zhiyuan1,Yang Pinghui1,Zhang Guolin1,Zhang Yuyang1,Xu Lei1,Zhang Daiji1,Li Sunsun1,Miao Chunyang1,Wang Nana1,Huang Wei1234,Wang Jianpu15ORCID

Affiliation:

1. Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China

2. Strait Laboratory of Flexible Electronics (SLoFE) Fuzhou 350117 China

3. Fujian Normal University Fuzhou 350117 China

4. Shaanxi Institute of Flexible Electronics (SIFE) Northwestern Polytechnical University (NPU) Xi'an 710072 China

5. School of Materials Science and Engineering & School of Microelectronics and Control Engineering Changzhou University Changzhou 213164 China

Abstract

AbstractThe iodide vacancy defects generated during the perovskite crystallization process are a common issue that limits the efficiency and stability of perovskite solar cells (PSCs). Although excessive ionic iodides have been used to compensate for these vacancies, they are not effective in reducing defects through modulating the perovskite crystallization. Moreover, these iodide ions present in the perovskite films can act as interstitial defects, which are detrimental to the stability of the perovskite. Here, an effective approach to suppress the formation of vacancy defects by manipulating the coordination chemistry of lead polyhalides during perovskite crystallization is demonstrated. To achieve this suppression, an α‐iodo ketone is introduced to undergo a process of Kornblum oxidation reaction that releases halide ions. This process induces a rapid collective transformation of lead polyhalides during the nucleation process and significantly reduces iodide vacancy defects. As a result, the ion mobility is decreased by one order of magnitude in perovskite film and the PSC achieves significantly improved thermal stability, maintaining 82% of its initial power conversion efficiency at 85 °C for 2800 h. These findings highlight the potential of halide ions released by the Kornblum oxidation reaction, which can be widely used for achieving high‐performance perovskite optoelectronics.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3