Affiliation:
1. School of Electrical Engineering Korea Advanced Institute of Science and Technology 291 Daehak‐ro, Yusenong‐gu Daejeon 305–701 Republic of Korea
2. Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
3. Advanced Nanosensor Research Center KI Nanocentury KAIST 291, Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
4. School of Materials Science and Engineering University of Ulsan (UOU) 12, Technosaneop‐ro 55 beon‐gil, Nam‐gu Ulsan 44776 Republic of Korea
Abstract
AbstractHigh‐entropy alloys (HEAs) provide unprecedented physicochemical properties over unary nanoparticles (NPs). According to the conventional alloying guideline (Hume–Rothery rule), however, only size‐and‐structure similar elements can be mixed, limiting the possible combinations of alloying elements. Recently, it has been reported that based on carbon thermal shocks (CTS) in a vacuum atmosphere at high temperature, ultrafast heating/cooling rates and high‐entropy environment play a critical role in the synthesis of HEAs, ruling out the possibility of phase separation. Since the CTS requires conducting supports, the Joule‐heating efficiencies rely on the carbon qualities, featuring difficulties in uniform heating along the large area. This work proposes a photo‐thermal approach as an alternative and innovative synthetic method that is compatible with ambient air, large‐area, remote process, and free of materials selection. Single flash irradiation on carbon nanofibers induced momentary high‐temperature annealing (>1800 °C within 20 ms duration, and ramping/cooling rates >104 K s−1) to successfully decorate HEA NPs up to nine elements with excellent compatibility for large‐scale synthesis (6.0 × 6.0 cm2 of carbon nanofiber paper). To demonstrate their feasibility toward applications, senary HEA NPs (PtIrFeNiCoCe) are designed and screened, showing high activity (ηoverall = 777 mV) and excellent stability (>5000 cycles) at the water splitting, including hydrogen evolution reactions and oxygen evolution reactions.
Funder
Ministry of Science and ICT, South Korea
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献