Durable Perovskite Solar Cells with 24.5% Average Efficiency: The Role of Rigid Conjugated Core in Molecular Semiconductors

Author:

Ren Ming12,Fang Lingyi13,Zhang Yuyan1,Eickemeyer Felix T.2,Yuan Yi1,Zakeeruddin Shaik M.2,Grätzel Michael2,Wang Peng1ORCID

Affiliation:

1. State Key Laboratory of Silicon and Advanced Semiconductor Materials Department of Chemistry Zhejiang University Hangzhou 310058 China

2. Laboratory of Photonics and Interfaces Institute of Chemical Science and Engineering École Polytechnique Fédérale de Lausanne (EPFL) Lausanne CH 1015 Switzerland

3. Institute of Microstructure Technology Karlsruhe Institute of Technology 76131 Karlsruhe Germany

Abstract

AbstractEfficient and robust n‐i‐p perovskite solar cells necessitate superior organic hole‐transport materials with both mechanical and electronic prowess. Deciphering the structure–property relationship of these materials is crucial for practical perovskite solar cell applications. Through direct arylation, two high glass transition temperature molecular semiconductors, DBC‐ETPA (202 °C) and TPE‐ETPA (180 °C) are synthesized, using dibenzo[g,p]chrysene (DBC) and 1,1,2,2‐tetraphenylethene (TPE) tetrabromides with triphenylene–ethylenedioxythiophene‐dimethoxytriphenylamine (ETPA). In comparison to spiro‐OMeTAD, both semiconductors exhibit shallower HOMO energy levels, resulting in increased hole densities (generated by air oxidation doping) and accelerated hole extraction from photoexcited perovskite. Experimental and theoretical studies highlight the more rigid DBC core, enhancing hole mobility due to reduced reorganization energy and lower energy disorder. Importantly, DBC‐ETPA possesses a higher cohesive energy density, leading to lower ion diffusion coefficients and higher Young's moduli. Leveraging these attributes, DBC‐ETPA is employed as the primary hole‐transport layer component, yielding perovskite solar cells with an average efficiency of 24.5%, surpassing spiro‐OMeTAD reference cells (24.0%). Furthermore, DBC‐ETPA‐based cells exhibit superior operational stability and 85 °C thermal storage stability.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Scholarship Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3