Boosting External Quantum Efficiency of Blue Perovskite QLEDs Exceeding 23% by Trifluoroacetate Passivation and Mixed Hole Transportation Design

Author:

Nong Yingyi1,Yao Jisong1,Li Jiaqi1,Xu Leimeng1,Yang Zhi1,Li Chuang1,Song Jizhong1ORCID

Affiliation:

1. Key Laboratory of Materials Physics of Ministry of Education School of Physics Zhengzhou University Daxue Road 75 Zhengzhou 450052 China

Abstract

AbstractPerovskite quantum dot‐based light‐emitting diodes (QLEDs) have been considered a promising display technology due to their wide color gamut for authentic color expression. Currently, the external quantum efficiency (EQE) for state‐of‐the‐art blue perovskite QLEDs is about 15%, which still lags behind its green and red counterparts (>25%) and blue film‐based LEDs. Here, blue perovskite QLEDs that achieve an EQE of 23.5% at 490 nm is presented, to the best knowledge, which is the highest value reported among blue perovskite‐based LED fields. This impressive efficiency is achieved through a combination of quantum dot (QD) passivation and optimal device design. First, blue mixed halide perovskite CsPbCl3−xBrx QDs passivated by trifluoroacetate exhibit excellent exciton recombination behavior with a photoluminescence quantum yield of 84% due to reducing uncoordinated Pb surface defects. Furthermore, the device is designed by introducing a mixed hole‐transport layer (M‐HTL) to increase hole injection and transportation capacity and improve carrier balance. It is further found that M‐HTL can decrease carrier leakage and increase radiative recombination in the device, evidenced by the visual electroluminescence spectrum at 2.0 V. The work breaks through the EQE gap of 20% for blue perovskite‐based QLEDs and significantly promotes their commercialization process.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3