Affiliation:
1. The Lab for Artificial Intelligence in Medical Imaging (AI‐Med) Department of Child and Adolescent Psychiatry Ludwig‐Maximilians‐Universität Munich Germany
2. Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy University Hospital Ludwig‐Maximilians‐Universität Munich Germany
3. Department of Radiology Technical University of Munich School of Medicine Munich Germany
Abstract
AbstractBackgroundPrediction of mental disorders based on neuroimaging is an emerging area of research with promising first results in adults. However, research on the unique demographic of children is underrepresented and it is doubtful whether findings obtained on adults can be transferred to children.MethodsUsing data from 6916 children aged 9–10 in the multicenter Adolescent Brain Cognitive Development study, we extracted 136 regional volume and thickness measures from structural magnetic resonance images to rigorously evaluate the capabilities of machine learning to predict 10 different psychiatric disorders: major depressive disorder, bipolar disorder (BD), psychotic symptoms, attention deficit hyperactivity disorder (ADHD), oppositional defiant disorder, conduct disorder, post‐traumatic stress disorder, obsessive‐compulsive disorder, generalized anxiety disorder, and social anxiety disorder. For each disorder, we performed cross‐validation and assessed whether models discovered a true pattern in the data via permutation testing.ResultsTwo of 10 disorders can be detected with statistical significance when using advanced models that (i) allow for non‐linear relationships between neuroanatomy and disorder, (ii) model interdependencies between disorders, and (iii) avoid confounding due to sociodemographic factors: ADHD (AUROC = 0.567, p = 0.002) and BD (AUROC = 0.551, p = 0.002). In contrast, traditional models perform consistently worse and predict only ADHD with statistical significance (AUROC = 0.529, p = 0.002).ConclusionWhile the modest absolute classification performance does not warrant application in the clinic, our results provide empirical evidence that embracing and explicitly accounting for the complexities of mental disorders via advanced machine learning models can discover patterns that would remain hidden with traditional models.
Funder
Bundesministerium für Bildung und Forschung
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献