Conservation agrivoltaics for sustainable food‐energy production

Author:

Time Alson12ORCID,Gomez‐Casanovas Nuria134ORCID,Mwebaze Paul1ORCID,Apollon Wilgince5ORCID,Khanna Madhu1ORCID,DeLucia Evan H.1ORCID,Bernacchi Carl J.126ORCID

Affiliation:

1. Institute for Sustainability, Energy, and Environment University of Illinois at Urbana‐Champaign Urbana Illinois USA

2. Department of Crop Sciences University of Illinois at Urbana‐Champaign Urbana Illinois USA

3. Rangeland, Wildlife & Fisheries Management Department Texas A&M College Station Texas USA

4. Institute for Advancing Health through Agriculture Texas A&M College Station Texas USA

5. Department of Civil and Environmental Engineering Idaho State University Pocatello Idaho USA

6. Global Change and Photosynthesis Research Unit, Agricultural Research Service USDA Urbana Illinois USA

Abstract

Societal Impact StatementTransformative agricultural strategies like agrivoltaics (AV) are essential for addressing the pressing global issues of sustainable energy and food production in a changing climate. Conservation‐agrivoltaics (Conservation‐AV) provides the potential to meet these needs while reinforcing natural resources and protecting the environment. It could enhance the ecological benefits of AV by improving soil health and biodiversity. It could create economic opportunities for farmers and increase the resilience and diversity of food crops under changing climate conditions. Furthermore, it could inform stakeholders about the benefits and challenges of implementing conservation agriculture management practices (CAMP) in AV and encourage further exploration and adoption of this innovative approach.SummaryTransformative strategies in agriculture are needed to address urgent global challenges related to energy and food production while reinforcing natural resources and the environment. Agrivoltaics (AV) has emerged in the past decade as one solution to this fundamental challenge of improving energy and food security. AV is defined as the co‐location of solar photovoltaic (PV) panels and crops on the same land to optimize food and energy production simultaneously and sustainably. Here, we propose that AV, together with conservation agriculture management practices (CAMP) strategies can help to intensify food security and energy production while reinforcing natural resources and the environment. Our main assertions in this opinion article are that: (1) AV systems need to overcome several agronomical, environmental, and ecological challenges to intensify food and energy production sustainably; (2) CAMP applied to AV systems can preserve the environment and ensure climate‐resilient food production; (3) implementation of CAMP in AV can lead to long‐term carbon sequestration, lower greenhouse gas emissions, and maintain or increase crop yields while preserving soil health and biodiversity; and (4) adoption of CAMP in AV can bring economic benefits, although challenges need to be overcome. This opinion article proposes a new ecosystem approach to integrate renewable energy and sustainable food production and encourages research on the effects of CAMP on AV systems.

Funder

National Institute of Food and Agriculture

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3