On subsumption relationships in data flow testing

Author:

Chaim Marcos Lordello1ORCID,Baral Kesina2,Offutt Jeff2,Neto Mario Concilio1,Araujo Roberto Paulo Andrioli de1

Affiliation:

1. School of Arts, Sciences and Humanities University of Sao Paulo Sao Paulo Brazil

2. Department of Computer Science George Mason University Fairfax Virginia USA

Abstract

SummaryData flow testing creates test requirements as definition‐use (DU) associations, where a definition is a program location that assigns a value to a variable and a use is a location where that value is accessed. Data flow testing is expensive, largely because of the number of test requirements. Luckily, many DU‐associations are redundant in the sense that if one test requirement (e.g. node, edge and DU‐association) is covered, other DU‐associations are guaranteed to also be covered. This relationship is called subsumption. Thus, testers can save resources by only covering DU‐associations that are not subsumed by other testing requirements. Although this has the potential to significantly decrease the cost of data flow testing, there are roadblocks to its application. Finding data flow subsumptions correctly and efficiently has been an elusive goal; the savings provided by data flow subsumptions and the cost to find them need to be assessed; and the fault detection ability of a reduced set of DU‐associations and the advantages of data flow testing over node and edge coverage need to be verified. This paper presents novel solutions to these problems. We present algorithms that correctly find data flow subsumptions and are asymptotically less costly than previous algorithms. We present empirical data that show that data flow subsumption is effective at reducing the number of DU‐associations to be tested and can be found at scale. Furthermore, we found that using reduced DU‐associations decreased the fault detection ability by less than 2%, and data flow testing adds testing value beyond node and edge coverage.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Wiley

Subject

Safety, Risk, Reliability and Quality,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3