Distinct epiphyte responses to drought in tropical mountain cloud forests

Author:

Tsai Yi‐Chen1ORCID,Wang Lixin2,Wang Chiao‐Ping3,Lin Teng‐Chiu1ORCID

Affiliation:

1. Department of Life Science National Taiwan Normal University Taipei Taiwan

2. Department of Earth Sciences Indiana University‐Purdue University Indianapolis (IUPUI) Indianapolis Indiana USA

3. Taiwan Forestry Research Institute Taipei Taiwan

Abstract

AbstractEpiphytes are often considered to be significantly impacted by precipitation changes because their lack of direct access to soil water. However, few in situ studies have examined how reduction in water availability may affect epiphyte growth. Using a unique stemflow collection and diversion device, we examined the effects of stemflow reduction of 25% and 50% on the growth and leaf traits of two common but distinct epiphyte species in a subtropical forest. One species (Asplenium nidus) has a large substrate, and another (Haplopteris zosterifolia) without known water storage structure. The 25% stemflow reduction had limited effects on the growth and leaf traits of the two epiphytes, indicating that 25% stemflow reduction did not reach the water stress threshold for the two epiphytes. It is also possible that the actual reduction in water availability was less than 25% since epiphytes do not use all available stemflow and there could be other sources of water such as fog and throughfall. The 50% stemflow reduction reduced leaf number and leaf area of H. zosterifolia, but not A. nidus, likely because water stored in the large substrate of A. nidus mitigated the impact of stemflow reduction. The thinner leaves, smaller leaf dry matter content, and lower δ13C of A. nidus than H. zosterifolia support the role of water storage of the substrate of A. nidus on mitigating water stress. The 50% stemflow reduction increased leaf thickness, leaf dry matter content of H. zosterifolia, and thickness of abaxial cuticle layer of both epiphytes but had no effect on δ13C. Stemflow reduction had no effects on nutrient concentration and nutrient ratios of both epiphytes suggesting that the epiphytes were able to maintain stoichiometry. Our results indicate that the epiphytes minimized nonstomatal water loss when environmental dryness increased but maintained stomata conductance, which could be important in minimizing the impacts of drought on plant growth and quickly resuming growth once drought ends. Our study highlights that not all epiphytes are similarly vulnerable to drought and precipitation reduction may change the relative abundance of epiphytes with and without water storage structure.

Funder

National Science and Technology Council

Publisher

Wiley

Subject

Earth-Surface Processes,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3