Undergraduate and graduate students' conceptual understanding of model classification outcomes under the lens of scientific argumentation

Author:

Wiese Lucas1ORCID,Will Pinto Hector E.12ORCID,Magana Alejandra J.1ORCID

Affiliation:

1. Department of Computer and Information Technology Purdue University West Lafayette Indiana USA

2. Department of Electrical Engineering University of Evansville Evansville Indiana USA

Abstract

AbstractRecent advancements in artificial intelligence (AI) and machine learning (ML) have driven research and development across multiple industries to meet national economic and technological demands. Consequently, companies are investing in AI, ML, and data analytics workforce development efforts to digitalize operations and enhance global competitiveness. As such, evidence‐based educational research around ML is essential to provide a foundation for the future workforce as they face complex AI challenges. This study explored students' conceptual ML understanding through a scientific argumentation framework, where we examined how they used evidence and reasoning to support claims about their ML models. This framework lets us gain insight into students' conceptualizations and helped scaffold student learning via a cognitive apprenticeship model. Thirty students in a mechanical engineering classroom at Purdue University experimented with neural network ML models within a computational notebook to create visual claims (ML models) with textual explanations of their evidence and reasoning. Accordingly, we qualitatively analyzed their learning artifacts to examine their underfit, fit, and overfit models and explanations. It was found that some students tended toward technical explanations while others used visual explanations. Students with technically dominant explanations had higher proficiency in generating correctly fit models but lacked explanatory evidence. Conversely, students with visually dominant explanations provided evidence but lacked technical reasoning and were less accurate in identifying fit models. We discuss implications for both groups of students and offer future research directions to examine how positive pedagogical elements of learning design can optimize ML educational material and AI workforce development.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3