Dye‐based recombinase‐aided amplification assay with enhanced sensitivity and specificity

Author:

Zhao Zijin12,You Yanbo3,Hua Shaowei12,Shen Xinxin1,Li Lingjun3,Ma Xuejun1ORCID

Affiliation:

1. National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases NHC Key Laboratory of Medical Virology and Viral Diseases National Institute for Viral Disease Control and Prevention Chinese Center for Disease Control and Prevention Beijing China

2. Graduate School Hebei North University Zhangjiakou Hebei China

3. State Key Laboratory of Antiviral Drugs NMPA Key Laboratory for Research and Evaluation of Innovative Drug Pingyuan Laboratory School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan China

Abstract

AbstractObjectiveFluorescent recombinase‐aided amplification (RAA) assays are increasingly being used in the detection of a variety of pathogens and have the advantages of rapidity and simplicity and similar sensitivity and specificity, compared with real‐time PCR (qPCR) assays, but they require a complex probe design. To eliminate the addition of fluorescent probes for RAA, an EvaGreen dye‐based recombinase‐aided amplification (EvaGreen‐RAA) assay using self‐avoiding molecular recognition system (SAMRS) primers was developed.MethodsThe SAMRS primers effectively avoided the production of primer dimers, thus improving the detection sensitivity, while EvaGreen dye was used to quantitatively measure the amplified products in real time. Using Staphylococcus aureus (SA) and Listeria monocytogenes (LM) as examples, EvaGreen‐RAA with SAMRS primers was developed. As a reference and comparison, a traditional fluorescence probe RAA method and a RAA with SAMRS primers (SAMRS‐RAA) for detecting SA and LM were also investigated. Serial dilutions of recombinant plasmids were used to evaluate the sensitivity of the assays. Unenriched and enriched simulated milk samples were used to evaluate the limits of detection (LOD) of these methods. Using high‐resolution melting (HRM) was used to explore the sensitivity of the dual EvaGreen‐RAA assay.ResultsThe sensitivity of the fluorescent RAA method for detecting SA and LM was 10 copies/μL using plasmids and the sensitivity of the SAMRS‐RAA and EvaGreen‐RAA for detecting SA and LM plasmids was 1 copies/μL. The LOD values of the EvaGreen‐RAA for SA and LM in unenriched simulated milk samples were 100 and 50 CFU/mL, respectively, and the LOD value for both SA and LM using enriched simulated milk samples was 10 CFU/mL. EvaGreen‐RAA had linear amplification in real time in the range of 1–105 copies/μL of the plasmids of SA and LM. The sensitivity of the dual EvaGreen‐RAA assay for SA and LM was estimated to be 102 CFU/mL.ConclusionA real‐time quantitative EvaGreen‐RAA method for detecting SA and LM was developed, which eliminates the need to design complex RAA probes. This dye‐based RAA with SARMS primers provides a new strategy for simplifying fluorescence probe RAA and allowing the detection of multiple pathogens, which has many potential applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3