Affiliation:
1. Department of Physics Government College University Faisalabad Pakistan
2. Department of Physics, College of Science Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
3. Department of Physics, Faculty of Science Al‐Baha University Al Bahah Saudi Arabia
4. College of Allied Health National University Manila Philippines
5. Department of Materials University of Oxford Oxford UK
Abstract
AbstractIn this research, we analyzed the impact that the optical characteristics of dielectric surface passivation and antireflection coating schemes have on the performance of passivated emitter and rear cell (PERC) silicon solar cells. We employed wafer ray tracer (WRT) and automate for simulation of heterostructure (AFORS‐HET) simulations, as well as experimental characterization of fabricated thin film coatings. We investigated three distinct front surface morphologies: planar surface, upright pyramids, and inverted pyramids. Using WRT, we calculated the photogeneration current densities (JG) for PERC devices with three schemes: (i) SiNx/AlOx as antireflection coating and passivation stacks on both the front and rear sides, (ii) SiNx antireflection coating on the front side and AlOx passivation layer on the rear side, and (iii) SiNx/AlOx as antireflection coating and passivation stacks on the front side with an AlOx passivation layer on the rear side. Following simulation with optimal JG, two schemes are experimentally evaluated: PECVD SiNx (70 nm) and atomic layer deposition (ALD) AlOx (15 and 25 nm). We confirmed the growth effects and optical properties using X‐ray diffraction, Raman spectroscopy, effective lifetime, and refractive index measurements. The most favorable electrical properties were obtained with SiNx (70 nm, front) and AlOx (25 nm, front and rear), where the AlOx can be deposited via ALD bifacially on a single step, minimizing processing while maintaining passivation performance. Finally, we used AFORS‐HET to simulate the maximum performance of PERC bearing such films. The results showed a Voc = 0.688 V, Jsc = 41.42 mA/cm2, FF = 84%, and packing conversion efficiency (PCE) = 24.12% as the optimal solar cell performance values.
Funder
British Council
Royal Academy of Engineering
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献