Cellulose nanocrystals from oil palm trunk biomass as a bio‐reinforcing filler for improved mechanical properties of modified natural rubber composites

Author:

Koeipudsa Niracha1,Phinyocheep Pranee1ORCID

Affiliation:

1. Department of Chemistry, Faculty of Science Mahidol University Bangkok Thailand

Abstract

AbstractCellulose nanocrystals (CNC) obtained from biomass are increasingly demanding as a candidate for rubber composite reinforcement due to their sustainability and environmentally friendly characteristics. This work explored CNC extracted from oil palm trunks, an agricultural waste, for its reinforcing efficacy for natural rubber (NR) composite. To achieve good compatibility of the hydrophilic CNC in non‐polar NR, the NR was modified in a simple and green epoxidation condition via its latex stage. The epoxidized natural rubbers (ENR) containing 15% and 25% epoxide content, symbolized as 15E and 25E, respectively, were prepared. The ENR/CNC nanocomposites were fabricated by mixing CNC aqueous suspension and ENR latex, followed by co‐coagulation by methanol. A low amount of CNC (0.5–5 phr) was incorporated into the rubber and it was found that the ENR/CNC nanocomposites showed improvement in mechanical properties compared to the NR/CNC nanocomposite. The 25E/CNC nanocomposite with 1 phr of CNC achieved a 22.6% increase in tensile strength while the 25E/CNC nanocomposite with 2 phr of CNC resulted in a 27.1% increase in tear strength. The enhanced performance of the fully bio‐based rubber nanocomposites is attributed to the CNC–rubber interaction and good CNC dispersion in the ENR matrices, evidenced by the results of SEM and crosslink density.Highlights Cellulose nanocrystal (CNC) was successfully obtained from the oil palm trunk. NR was modified into epoxidized natural rubber (ENR) for increased polarity. ENR/CNC mixing was done in a simple and environmentally friendly latex process. Only 2 phr of CNC resulted in a 27.1% increased tear strength of rubber composite. SEM clearly evidenced improvement of CNC–ENR interaction.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3