Ligandability and druggability assessment via machine learning

Author:

Di Palma Francesco1ORCID,Abate Carlo12ORCID,Decherchi Sergio1ORCID,Cavalli Andrea12ORCID

Affiliation:

1. Computational & Chemical Biology Fondazione Istituto Italiano di Tecnologia Genoa Italy

2. Department of Pharmacy and Biotechnology University of Bologna Bologna Italy

Abstract

AbstractDrug discovery is a daunting and failure‐prone task. A critical process in this research field is represented by the biological target and pocket identification steps as they heavily determine the subsequent efforts in selecting a putative ligand, most often a small molecule. Finding “ligandable” pockets, namely protein cavities that may accept a drug‐like binder is instrumental to the more general and drug discovery oriented “druggability” estimation process. While high‐throughput experimental techniques exist to identify putative binding sites other than the orthosteric one, these techniques are relatively expensive and not so commonly available in labs. In this regard, computational means of detecting ligandable pockets are advisable for their inexpensiveness and speed. These methods can become, in principle, particularly predictive when supported by machine learning methodologies that provide the modeling framework. As with any data‐driven effort, the outcome critically depends on the input data, its featurization process and possible associated biases. Also, the machine learning task, (supervised/unsupervised) the learning method, and the possible usage of molecular dynamics data considerably shape the inherent assumptions of the modeling step. Defining a proper quantitative thermodynamic and/or kinetic score (or label) is key to the modeling process; here we revise literature and propose residence time as a novel ideal indicator of ligandability. Interestingly the vast majority of the methods does not keep into consideration kinetics nor thermodynamics when devising predictors.This article is categorized under: Data Science > Artificial Intelligence/Machine Learning Structure and Mechanism > Computational Biochemistry and Biophysics Data Science > Chemoinformatics

Publisher

Wiley

Subject

Materials Chemistry,Computational Mathematics,Physical and Theoretical Chemistry,Computer Science Applications,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3