Fully resolved high‐precision measurement of 36S for sulfur reference materials

Author:

Sun Jiayang1ORCID,Farquhar James12

Affiliation:

1. Department of Geology University of Maryland College Park Maryland USA

2. Earth System Science Interdisciplinary Center University of Maryland College Park Maryland USA

Abstract

RationaleAdvances in sulfur isotope measurement techniques have led to increased analytical precision. However, accurate measurement of 36S remains a challenge. This difficulty arises primarily from unresolved isobaric interferences of 36SF5+ at m/z = 131 u, 186WF42+ and 12C3F5+, which lead to scale compression. Theoretically, unresolved interference with 2% relative intensity could cause 1‰ underestimation in a sample with real δ36S = +60‰.MethodsOur study develops an interference‐free four‐sulfur isotope measurement method by using the high‐resolution mass spectrometer Panorama. The mass resolving power of Panorama allows the distinction of 186WF42+ and 12C3F5+ from 36SF5+.ResultsThe 186WF42+ relative intensity was initially 9.4% that of 36SF5+ but reduced to 1.5% through tuning, while 12C3F5+ relative intensity dropped from 74% to 40% after flushing with air. Three IAEA standards were analyzed with both Panorama and MAT 253. We obtained Δ36SIAEA‐S‐2 = 1.238 ± 0.040‰ and Δ36SIAEA‐S‐3 = −0.882 ± 0.030‰, relative to IAEA‐S‐1, from Panorama, and Δ36SIAEA‐S‐2 = 0.18 ± 0.02‰ and Δ36SIAEA‐S‐3 = 0.11 ± 0.14‰ from MAT 253, while δ34S values from the two instruments are consistent.ConclusionThe measurement discrepancies on 36S between Panorama and MAT 253 highlight the impact of scale compression due to unresolved isobaric interferences. Resolving this problem is crucial for accurate 36S analysis. We recommend replacing the filament material with rhenium, tuning the filament voltage, and avoiding carbon in instruments to eliminate or mitigate interferences. We propose future systematic efforts to calibrate the δ33S, δ34S, and δ36S of IAEA‐S‐1, IAEA‐S‐2, and IAEA‐S‐3 and advise bracketing all three reference materials in the measurement sequences, to enable calibration.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3