Computational fluid dynamic analysis of hydrogen‐injected natural gas for mixing and transportation behaviors in pipeline structures

Author:

Yan Shuangjie1,Jia Guanwei1ORCID,Xu Weiqing23ORCID,Li Rui4,Lu YangHui5,Cai Maolin23

Affiliation:

1. School of Physics and Electronics Henan University Kaifeng China

2. School of Automation Science and Electrical Engineering Beihang University Beijing China

3. Pneumatic and Thermodynamic Energy Storage and Supply Beijing Key Laboratory Beijing China

4. General Institute of Science and Technology of National Petroleum and Natural Gas Pipeline Network Group Co., Ltd Langfang Hebei China

5. State Power Investment Corporation Research Institute Co., Ltd Beijing China

Abstract

AbstractThe transportation of hydrogen is a weak link in the large‐scale development of the hydrogen energy industry. Injecting hydrogen into the natural gas pipeline network for transportation is an efficient way to achieve the large‐scale, long‐distance, and low‐cost transportation of hydrogen. Hydrogen can lead to hydrogen embrittlement in natural gas pipelines and cause safety incidents if hydrogen and natural gas are not mixed uniformly. Therefore, it is necessary to study the blending process and blending uniformity of hydrogen and natural gas. In this study, a three‐dimensional model of the hydrogen‐injected natural gas pipeline was constructed. The effects of hydrogen injection inlet and turbulator configuration on the mixing process of hydrogen and natural gas were investigated using a computational fluid dynamics approach. The results show that increasing the number of hydrogen injection inlets shortens the distance L98% of uniform mixing of hydrogen and natural gas. Increasing the radial distance r from the initial hydrogen mixing positions to the center of the pipeline will shorten the distance for uniform gas mixing in the pipeline. The addition of turbulator configurations in the pipeline significantly reduces the distance to uniform gas mixing. Changing the distance Lturb from the turbulator to the initial mixing position further shortens the distance between hydrogen and natural gas mixing uniformly. The results of this study provide a reference for the structural design of the hydrogen–natural gas mixing pipeline and the gas distribution state during the mixing process.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3