Research on spectral method of lost circulation layer located by transient pressure wave

Author:

Wang Beijing1ORCID,Zhu Zhongxi1ORCID,Lei Wanneng2,Wu Yanxian3

Affiliation:

1. Key Laboratory of Drilling and Production Engineering for Oil and Gas, National Engineering Research Center for Oil & Gas Drilling and Completion Technology Yangtze University Wuhan Hubei China

2. Production Capacity Construction Division of PetroChina Tarim Oilfield Company Korla China

3. Engineering Technology Research Institute of PetroChina Xinjiang Oilfield Company Karamay China

Abstract

AbstractLeakage in the wellbore annulus during drilling operations can affect normal production operations, resulting in a severe waste of resources and economic loss, so it is crucial to adopt a fast and effective leak identification method for subsequent plugging operations. For the complex problem of judging the location of the leakage layer, we proposed the method of excitation pressure wave to identify the location of the leakage layer. By analyzing the transfer of pressure waves within the annular pipe system and the pressure head response spectrum, the leak's location is identified based on the location of the resonance point and the change in resonance amplitude. The pressure wave signal contains too much noise. The variational mode decomposition (VMD) algorithm and the Hilbert joint spectrum were used to extract the main frequency components to reconstruct the signal to achieve the denoising effect. On this basis, the reconstructed signal is processed by fast Fourier transform (FFT) to obtain the pressure wave response spectrum, analyze the frequency domain features, and then determine the location of the leakage layer. The experimental results verify that: ① When a leak occurs in the wellbore annulus, the pressure wave will generate additional resonance points in the frequency domain due to the presence of the leak point. ② The combination of the VMD algorithm, FFT, and Hilbert joint spectrum can effectively remove the noise of the pressure wave signal. ③ The method effectively avoids the difficulty of identifying negative pressure waves in the time domain analysis of pressure wave signals. It can effectively locate the leaky layer in the frequency domain analysis. It is concluded that the principle of the method is feasible and has practical significance for field application.

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3