Cumulative effects of dams on migratory fishes across the conterminous United States: Regional patterns in fish responses to river network fragmentation

Author:

Dean E. M.1ORCID,Infante Dana M.1,Yu Hao1,Cooper Arthur1,Wang Lizhu2,Ross Jared1

Affiliation:

1. Department of Fisheries and Wildlife Michigan State University East Lansing Michigan USA

2. International Joint Commission Great Lakes Regional Office Windsor Ontario Canada

Abstract

AbstractGlobally, dams fragment river networks, threatening migratory fishes which require access to distinct habitats to complete their life cycles. Efforts to understand how cumulative effects of multiple dams affect migratory fishes across large regions, such as a country or continent, could help to identify locations for connectivity‐enhancing actions to conserve migratory fishes. To address this, we evaluated cumulative effects of dams on migratory fishes in rivers across nine ecoregions of the conterminous USA. First, using fish data from thousands of sites (N = 45,989), we summarized ecoregional patterns in assemblages, quantifying the number of migratory species comprising assemblages, showing the prominence of potamodromous species across the large region as well as differences in migratory life history traits among ecoregions. Next, we compared the importance of a set of river network fragmentation metrics that captured influences of multiple dams in networks versus other anthropogenic landscape stressors and natural landscape factors that impact migratory fishes by ecoregion. We found that migratory fishes were more sensitive to cumulative dam effects than other stressors including urbanization and agriculture in the eastern USA. To further identify specific effects of environmental variables on potamodromous fishes, we conducted Boosted Regression Trees analysis in the eastern ecoregions. Our results suggested that the key natural influences on river fishes included catchment area as well as river baseflow and air temperature, suggesting that migratory fishes may be affected by changing climate. Additionally, we found that downstream dams were more influential than other human stressors to potamodromous fishes, underscoring the importance of enhancing connectivity within river networks to conserve migratory fishes. Collectively, our results provide new insights in identifying threats to migratory fish species across the USA, providing information that can aid in conserving this vulnerable but ecologically and socioeconomically important group of fishes.

Funder

Michigan State University

U.S. Geological Survey

Publisher

Wiley

Subject

General Environmental Science,Water Science and Technology,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3