Predictive value of circulating lymphocyte subsets and inflammatory indexes for neoadjuvant chemoradiotherapy response in rectal mucinous adenocarcinoma patients: A machine learning approach

Author:

Lin Yu1,Sun Yanwu1,Jiang Weizhong1,Deng Yu1,Huang Ying1,Chi Pan1ORCID

Affiliation:

1. Department of Colorectal Surgery Fujian Medical University Union Hospital Fuzhou Fujian People's Republic of China

Abstract

AbstractIntroductionIn this study, we aimed to evaluate the predictive value of circulating lymphocyte subsets and inflammatory indexes in response to neoadjuvant chemoradiotherapy (NCRT) in patients with rectal mucinous adenocarcinomas (MACs).MethodsRectal MAC patients who underwent NCRT and curative resection at Fujian Medical University Union Hospital's Department of Colorectal Surgery between 2016 and 2020 were included in the study. Patients were categorized into good and poor response groups based on their pathological response to NCRT. An independent risk factor‐based nomogram model was constructed by utilizing multivariate logistic regression analysis. Additionally, the extreme gradient boosting (XGB) algorithm was applied to build a machine learning (ML)‐based predictive model. Feature importance was quantified using the Shapley additive explanations method.ResultsOut of the 283 participants involved in this research, 190 (67.1%) experienced an unfavorable outcome. To identify the independent risk factors, logistic regression analysis was performed, considering variables such as tumor length, pretreatment clinical T stage, PNI, and Th/Tc ratio. Subsequently, a nomogram model was constructed, achieving a C‐index of 0.756. The ML model exhibited higher prediction accuracy than the nomogram model, achieving an AUROC of 0.824 in the training set and 0.762 in the tuning set. The top five important parameters of the ML model were identified as the Th/Tc ratio, neutrophil to lymphocyte, Th lymphocytes, Gross type, and T lymphocytes.ConclusionRadiochemotherapy sensitivity is markedly influenced by systemic inflammation and lymphocyte‐mediated immune responses in rectal MAC patients. Our ML model integrating clinical characteristics, circulating lymphocyte subsets, and inflammatory indexes is a potential assessment tool that can provide a reference for individualized treatment for rectal MAC patients.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3