2b or not 2b? 2bRAD is an effective alternative to ddRAD for phylogenomics

Author:

Chambers E. Anne12ORCID,Tarvin Rebecca D.13ORCID,Santos Juan C.4,Ron Santiago R.5ORCID,Betancourth‐Cundar Mileidy6,Hillis David M.1,Matz Mikhail V.1ORCID,Cannatella David C.1

Affiliation:

1. Department of Integrative Biology and Biodiversity Center University of Texas at Austin Austin Texas USA

2. Department of Environmental Science, Policy, and Management and Museum of Vertebrate Zoology University of California Berkeley Berkeley California USA

3. Department of Integrative Biology and Museum of Vertebrate Zoology University of California Berkeley Berkeley California USA

4. Department of Biological Sciences St John's University New York New York USA

5. Museo de Zoología, Escuela de Ciencias Biológicas Pontificia Universidad Católica del Ecuador Quito Ecuador

6. Departamento de Ciencias Biológicas Universidad de los Andes Bogotá Colombia

Abstract

AbstractRestriction‐site‐associated DNA sequencing (RADseq) has become an accessible way to obtain genome‐wide data in the form of single‐nucleotide polymorphisms (SNPs) for phylogenetic inference. Nonetheless, how differences in RADseq methods influence phylogenetic estimation is poorly understood because most comparisons have largely relied on conceptual predictions rather than empirical tests. We examine how differences in ddRAD and 2bRAD data influence phylogenetic estimation in two non‐model frog groups. We compare the impact of method choice on phylogenetic information, missing data, and allelic dropout, considering different sequencing depths. Given that researchers must balance input (funding, time) with output (amount and quality of data), we also provide comparisons of laboratory effort, computational time, monetary costs, and the repeatability of library preparation and sequencing. Both 2bRAD and ddRAD methods estimated well‐supported trees, even at low sequencing depths, and had comparable amounts of missing data, patterns of allelic dropout, and phylogenetic signal. Compared to ddRAD, 2bRAD produced more repeatable datasets, had simpler laboratory protocols, and had an overall faster bioinformatics assembly. However, many fewer parsimony‐informative sites per SNP were obtained from 2bRAD data when using native pipelines, highlighting a need for further investigation into the effects of each pipeline on resulting datasets. Our study underscores the importance of comparing RADseq methods, such as expected results and theoretical performance using empirical datasets, before undertaking costly experiments.

Funder

National Science Foundation

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3