Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages

Author:

Melief Sara M.1,Schrama Ellen1,Brugman Martijn H.1,Tiemessen Machteld M.1,Hoogduijn Martin J.2,Fibbe Willem E.1,Roelofs Helene1

Affiliation:

1. Department of Immunohematology and Blood Transfusion Leiden University Medical Center, Leiden, The Netherlands

2. Department of Internal Medicine Erasmus Medical Center, Rotterdam, The Netherlands

Abstract

Abstract Multipotent stromal cells (MSC) have been shown to possess immunomodulatory capacities and are therefore explored as a novel cellular therapy. One of the mechanisms through which MSC modulate immune responses is by the promotion of regulatory T cell (Treg) formation. In this study, we focused on the cellular interactions and secreted factors that are essential in this process. Using an in vitro culture system, we showed that culture-expanded bone marrow-derived MSC promote the generation of CD4+CD25hiFoxP3+ T cells in human PBMC populations and that these populations are functionally suppressive. Similar results were obtained with MSC-conditioned medium, indicating that this process is dependent on soluble factors secreted by the MSC. Antibody neutralization studies showed that TGF-β1 mediates induction of Tregs. TGF-β1 is constitutively secreted by MSC, suggesting that the MSC-induced generation of Tregs by TGF-β1 was independent of the interaction between MSC and PBMC. Monocyte-depletion studies showed that monocytes are indispensable for MSC-induced Treg formation. MSC promote the survival of monocytes and induce differentiation toward macrophage type 2 cells that express CD206 and CD163 and secrete high levels of IL-10 and CCL-18, which is mediated by as yet unidentified MSC-derived soluble factors. CCL18 proved to be responsible for the observed Treg induction. These data indicate that MSC promote the generation of Tregs. Both the direct pathway through the constitutive production of TGF-β1 and the indirect novel pathway involving the differentiation of monocytes toward CCL18 producing type 2 macrophages are essential for the generation of Tregs induced by MSC.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3