The aryl hydrocarbon receptor pathway is a marker of lung cell activation but does not play a central pathologic role in engineered stone‐associated silicosis

Author:

Song Yong1ORCID,Yen Seiha1,Southam Katherine1,Gaskin Sharyn2,Hoy Ryan F.34,Zosky Graeme R.15

Affiliation:

1. Menzies Institute for Medical Research, College of Health and Medicine University of Tasmania Hobart Tasmania Australia

2. Adelaide Exposure Science and Health, School of Public Health University of Adelaide Adelaide South Australia Australia

3. Monash Centre for Occupational and Environmental Health, School of Public Health & Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences Monash University Melbourne Victoria Australia

4. Department of Respiratory Medicine Alfred Health Melbourne Victoria Australia

5. Tasmanian School of Medicine, College of Health and Medicine University of Tasmania Hobart Tasmania Australia

Abstract

AbstractEngineered stone‐associated silicosis is characterised by a rapid progression of fibrosis linked to a shorter duration of exposure. To date, there is lack of information about molecular pathways that regulates disease development and the aggressiveness of this form of silicosis. Therefore, we compared transcriptome responses to different engineered stone samples and standard silica. We then identified and further tested a stone dust specific pathway (aryl hydrocarbon receptor [AhR]) in relation to mitigation of adverse lung cell responses. Cells (epithelial cells, A549; macrophages, THP‐1) were exposed to two different benchtop stone samples, standard silica and vehicle control, followed by RNA sequencing analysis. Bioinformatics analyses were conducted, and the expression of dysregulated AhR pathway genes resulting from engineered stone exposure was then correlated with cytokine responses. Finally, we inhibited AhR pathway in cells pretreated with AhR antagonist and observed how this impacted cell cytotoxicity and inflammation. Through transcriptome analysis, we identified the AhR pathway genes (CYP1A1, CYP1B1 and TIPARP) that showed differential expression that was unique to engineered stones and common between both cell types. The expression of these genes was positively correlated with interleukin‐8 production in A549 and THP‐1 cells. However, we only observed a mild effect of AhR pathway inhibition on engineered stone dust induced cytokine responses. Given the dual roles of AhR pathway in physiological and pathological processes, our data showed that expression of AhR target genes could be markers for assessing toxicity of engineered stones; however, AhR pathway might not play a significant pathologic role in engineered stone‐associated silicosis.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3