Effect of platelet length and stochastic morphology on flexural behavior of prepreg platelet molded composites

Author:

Sattar Siavash12ORCID,Laredo Benjamin Beltran2,Kravchenko Sergii G.3,Kravchenko Oleksandr G.2

Affiliation:

1. University of Minnesota Duluth Duluth Minnesota USA

2. Old Dominion University Norfolk Virginia USA

3. The University of British Columbia Vancouver British Columbia Canada

Abstract

AbstractPrepreg platelet molding compound (PPMC) can be used to create structural grade material with a heterogeneous mesoscale morphology. The present work considered various platelet lengths of the prepreg system IM7/8552 to study the effect of platelet length on the flexural behavior of PPMC composite. A progressive failure finite‐element analysis was used to understand competing failure modes in PPMC with the different platelet length. The interlaminar and in‐plane damage mechanisms were employed to describe complex failure modes within the mesostructure of PPMCs. Experimental results of the flexural tests of the PPMC with different platelet length sizes were used to validate the modeling prediction. The experimental and modeling results revealed complex behavior of the flexural mechanical properties (modulus and strength) on the platelet length. The experimental results indicate that PPMC composites processed with a plate length of 12.7 mm have a higher flexural modulus and strength than 25.4 and 6.35 mm. The platelet length effect on the flexural mechanical behavior was attributed to interactions between various damage mechanisms and the stochastic fiber orientation distribution variability in the material.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3