A vector‐valued ground motion intensity measure for base‐isolated buildings in far‐field regions

Author:

Güneş Necmettin1ORCID

Affiliation:

1. Department of Architecture Sivas Cumhuriyet University Sivas Türkiye

Abstract

AbstractIn this study, the effects of the spectral acceleration at the superstructure first‐mode period on the isolator displacement are investigated for far‐field ground motions. For this purpose, two different base‐isolated models are subjected to 165 far‐field ground motions. It is demonstrated that considering the spectral acceleration at the superstructure first‐mode period, besides that at the effective period, improves the estimation accuracy of isolator displacement. ASCE 7‐22 modifies the scaling period range to consider the superstructure first mode period and proposes the new period range from the superstructure first‐mode period to the 1.25 times effective period. In the ASCE 7‐22, the same weight factor is used for the whole period range. However, the present study shows that adding the superstructure first‐mode related period range with appropriate weight factor to the effective period‐based scaling range decreases the dispersion of isolator displacement in the nonlinear response history analyses (NRH). Then, to overcome the spectral shape effects on the fragility curves, a vector‐valued intensity measure parameter is obtained by combining spectral acceleration at the effective period and reduced spectral acceleration at the superstructure first‐mode period. The optimum contribution factor for the spectral acceleration at the superstructure first‐mode period is defined as the ratio of the superstructure first‐mode period to the effective period. The article shows that the proposed parameter is efficient and sufficient to be used as an intensity measure for far‐field ground motions. Furthermore, regression analysis results indicate that this vector‐valued intensity measure parameter correlates well with the isolator displacement. Further, the article shows that using the proposed IM parameter in the fragility curves makes the collapse margin ratio of these curves less sensitive to the spectral shape of the selected ground motions.

Publisher

Wiley

Reference86 articles.

1. ASCE.Minimum design loads for buildings and other structures. ASCE standard ASCE/SEI 7‐10. VA USA:2010.

2. TBEC.Turkish Building Earthquake Code. Disaster and Emergency Management Presidency Ankara 2018.

3. Effects of near-fault pulse-like ground motions on seismically isolated buildings

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3