Effects of coal mining disturbance on spatial and temporal distribution of soil water content in Northwest China‐based on 3D EBK model

Author:

Zhang Kai1ORCID,Chen Mengyuan1,Feng Shaokai1,Chen Xiangyu1,Yan Zhao1

Affiliation:

1. School of Chemical &Environmental Engineering China University of Mining & Technology Beijing China

Abstract

AbstractNorthwest China is both an important coal storage base and an ecologically fragile area, and soil water content (SWC) is a key factor limiting the ecological development of Northwest China. Revealing the characteristics of spatial and temporal distribution changes of soil water content in mining areas under coal mining disturbance and the influencing mechanism is crucial for the protection of water resources in mining areas. In this study, the soil water content (depth 0–1000 cm) of a typical coal mine subsidence area in the western part of Shendong Coal Group was monitored in situ for 1 year after mining, and the absolute value, variability, and spatial distribution of soil water content were temporally analysed by combining classical statistics, 2D Ordinary Kriging and 3D Empirical Bayesian kriging spatial interpolation. sequence analysis. The results showed that the shallow SWC (0 ~ 60 cm) was distributed horizontally in bands, and gradually increased along the direction from northwest to southeast; with the increase of coal mining time, the absolute value of SWC decreased by 0.81% ~ 33.58%, and the coefficient of variation decreased and then increased, with the range of variation from 2.19% ~ 34.49%. The deep SWC (100 ~ 1000 cm) was stratified vertically and increased with soil depth, and the shallow and deeper soil moisture would gradually migrate to the middle layer under the influence of coal mining. In addition, this paper accurately portrays the three‐dimensional spatial and temporal distribution of soil water content by the 3D EBK model, which further reveals the mechanism of coal mining's influence on soil water content. This study can provide technical and data support for predicting and evaluating the potential impacts of mining activities on the water cycle, and help mining areas to formulate policies for managing and protecting water resources.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Reference41 articles.

1. Comparison of Linear and Nonlinear Kriging Methods for Characterization and Interpolation of Soil Data

2. Study on distribution and variation characteristics of soil water and salt profile under controlled pipe drainage;Bixuan C.;Transactions of the Chinese Society of Agricultural Engineering,2021

3. Research on the influence of mining subsidence cracks on soil physical properties in wind‐sand and loess areas;Bo L.;Green Science and Technology,2022

4. Impacts of grazing on ground cover, soil physical properties and soil loss via surface erosion: A novel geospatial modelling approach

5. Soil organic carbon distribution in relation to land use and its storage in a small watershed of the Loess Plateau, China

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3