An efficient method for improving the stability of Monascus pigments using ionic gelation

Author:

Wei Mengru12,Zhu Jingjing2,Gao Hongshuai23,Yao Huanhuan2,Zhai Cuiping1,Nie Yi23

Affiliation:

1. College of Chemistry and Molecular Sciences Henan University Kaifeng China

2. Zhengzhou Institute of Emerging Industrial Technology Zhengzhou China

3. Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering Chinese Academy of Sciences Beijing China

Abstract

AbstractBACKGROUNDMonascus pigments (Mps) are easily impacted by heating, pH and light, resulting in degradation. In this study, Mps were encapsulated by the ionic gelation method with sodium alginate (SA) and sodium caseinate (SC), as well as CaCl2 as a crosslinker. The encapsulated Mps SA/SC in four proportions (SA/SC: 1/4, 2/3, 3/2, 4/1, w/w). Then, the encapsulation efficiency and particle size of the SA/SC‐Mps system were evaluated to obtain the optimal embedding conditions. Finally, the effects of heating, pH, light and storage on the stability of non‐capsulated Mps and encapsulated Mps were assessed.RESULTSSA/SC = 2/3 (AC2) had higher encapsulation efficiency (74.30%) of Mps and relatively small particle size (2.02 mm). The AC2 gel beads were chosen for further investigating the stability of encapsulated Mps to heating, pH, light and storage. Heat stability experiments showed that the degradation of Mps followed first‐order kinetics, and the encapsulated Mps had lower degradation rates than non‐capsulated Mps. Encapsulation could reduce the effect of pH on Mps. The effects of ultraviolet light on the stability of Mps were considered, and showed that the retention efficiency of encapsulated Mps was 22.01% higher than that of non‐capsulated Mps on the seventh day. Finally, storage stability was also evaluated under dark refrigerated conditions for 30 days, and the results indicated that encapsulation could reduce the degradation of Mps.CONCLUSIONThis study has proved that AC2 gel beads can improve the stability of Mps. Thus, the ionic gelation method is a promising encapsulation method to improve the stability of Mps. © 2023 Society of Chemical Industry.

Publisher

Wiley

Subject

Nutrition and Dietetics,Agronomy and Crop Science,Food Science,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3