Efficient presolving methods for the influence maximization problem

Author:

Chen Sheng‐Jie12,Chen Wei‐Kun3ORCID,Dai Yu‐Hong12ORCID,Yuan Jian‐Hua4,Zhang Hou‐Shan4

Affiliation:

1. Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China

2. School of Mathematical Sciences University of Chinese Academy of Sciences Beijing China

3. School of Mathematics and Statistics/Beijing Key Laboratory on MCAACI Beijing Institute of Technology Beijing China

4. School of Science Beijing University of Posts and Telecommunications Beijing China

Abstract

AbstractWe consider the influence maximization problem (IMP) which asks for identifying a limited number of key individuals to spread influence in a network such that the expected number of influenced individuals is maximized. The stochastic maximal covering location problem (SMCLP) formulation is a mixed integer programming formulation that effectively approximates the IMP by the Monte‐Carlo sampling. For IMPs with a large‐scale network or a large number of samplings, however, the SMCLP formulation cannot be efficiently solved by existing exact algorithms due to its large problem size. In this paper, we attempt to develop presolving methods to reduce the problem size and hence enhance the capability of employing exact algorithms in solving large‐scale IMPs. In particular, we propose two effective presolving methods, called strongly connected nodes aggregation (SCNA) and isomorphic nodes aggregation (INA), respectively. The SCNA enables to build a new SMCLP formulation that is potentially much more compact than the existing one, and the INA further eliminates variables and constraints in the SMCLP formulation. A theoretical analysis on two special cases of the IMP is provided to demonstrate the strength of the SCNA and INA in reducing the problem size of the SMCLP formulation. We integrate the proposed presolving methods, SCNA and INA, into the Benders decomposition algorithm, which is recognized as one of the state‐of‐the‐art exact algorithms for solving the IMP. We show that the proposed SCNA and INA provide the possibility to develop a much faster separation algorithm for the Benders cuts. Numerical results demonstrate that with the SCNA and INA, the Benders decomposition algorithm is much more effective in solving the IMP in terms of solution time.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Beijing Institute of Technology Research Fund Program for Young Scholars

Publisher

Wiley

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3