Establishment and evaluation of targeted molecular screening model for the ryanodine receptor or sarco/endoplasmic reticulum calcium ATPase

Author:

Lu Xiaopeng1,Jiang Linlin1,Chen Li1,Ding Wenwei1,Wu Hua1,Ma Zhiqing1ORCID

Affiliation:

1. Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education College of Plant Protection, Northwest A & F University Yangling China

Abstract

AbstractBACKGROUDEndoplasmic reticulum/sarcoplasmic reticulum (ER/SR) is crucial for maintaining intracellular calcium homeostasis due to the calcium‐signaling‐related proteins on its membrane. While ryanodine receptors (RyR) on insect ER/SR membranes are well‐known as targets for diamide insecticides, little is known about other calcium channels. Given the resistance of diamide insecticides, the establishment of molecular screening models targeting RyR or sarco/endoplasmic reticulum calcium ATPase (SERCA) is conducive to the discovery of new insecticidal molecules.RESULTSThe morphological features of Mythimna separata SR have closed vesicles with integrity and high density. The 282 proteins in the SR component contained RyR and SERCA. A measurement model for the release and uptake of calcium was successfully established by detecting calcium ions outside the SR membrane using a fluorescence spectrophotometer. In vitro testing systems using SR vesicles found that diamide insecticides could activate dose‐dependently RyR, with EC50 values of 0.14 μM (Chlorantraniliprole), 0.21 μM (Flubendiamide), and 0.57 μM (Cyantraniliprole), respectively. However, dantrolene inhibited RyR‐mediated calcium release with an IC50 value of 353.9 μM, suggesting that dantrolene can weakly antagonize RyR. Moreover, cyclopiazonic acid significantly reduced the enzyme activity and calcium uptake capacity of SERCA. On the contrary, CDN1163 markedly activated the enzyme activity and improved the calcium transport capacity of SERCA.CONCLUSIONSSR vesicles can be used to study the function of unknown proteins on the SR membranes, as well as for high‐throughput screening of highly active compounds targeting RyR or SERCA. © 2024 Society of Chemical Industry.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3