Tumor vaccine based on extracellular vesicles derived from γδ‐T cells exerts dual antitumor activities

Author:

Wang Xiwei1ORCID,Zhang Yanmei1ORCID,Chung Yuet1,Tu Chloe Ran2ORCID,Zhang Wenyue1,Mu Xiaofeng1ORCID,Wang Manni1,Chan Godfrey Chi‐Fung1ORCID,Leung Wing‐Hang1ORCID,Lau Yu‐Lung1ORCID,Liu Yinping1ORCID,Tu Wenwei13ORCID

Affiliation:

1. Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong SAR China

2. Department of Data Sciences, Dana‐Farber Cancer Institute Harvard University Boston Massachusetts USA

3. CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China

Abstract

Abstractγδ‐T cells are innate‐like T cells with dual antitumor activities. They can directly eradicate tumor cells and function as immunostimulatory cells to promote antitumor immunity. Previous studies have demonstrated that small extracellular vesicles (EVs) derived from γδ‐T cells (γδ‐T‐EVs) inherited the dual antitumor activities from their parental cells. However, it remains unknown whether γδ‐T‐EVs can be designed as tumors vaccine to improve therapeutic efficacy. Here, we found that γδ‐T‐EVs had immune adjuvant effects on antigen‐presenting cells, as revealed by enhanced expression of antigen‐presenting and co‐stimulatory molecules, secretion of pro‐inflammatory cytokines and antigen‐presenting ability of DCs after γδ‐T‐EVs treatment. The γδ‐T‐EVs‐based vaccine was designed by loading tumor‐associated antigens (TAAs) into γδ‐T‐EVs. Compared with γδ‐T‐EVs, the γδ‐T‐EVs‐based vaccine effectively promoted more tumor‐specific T‐cell responses. In addition, the vaccine regimen preserved direct antitumor effects and induced tumor cell apoptosis. Interestingly, the allogeneic γδ‐T‐EVs‐based vaccine showed comparable preventive and therapeutic antitumor effects to their autologous counterparts, indicating a better way of centralization and standardization in clinical practice. Furthermore, the allogeneic γδ‐T‐EVs‐based vaccine displayed advantages over the DC‐EVs‐based vaccine through their dual antitumor activities. This study provides a proof‐of‐concept for using the allogeneic γδ‐T‐EVs‐based vaccine in cancer control.

Publisher

Wiley

Subject

Cell Biology,Histology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3