Sharing information across patient subgroups to draw conclusions from sparse treatment networks

Author:

Evrenoglou Theodoros1ORCID,Metelli Silvia1,Thomas Johannes‐Schneider2,Siafis Spyridon2,Turner Rebecca M.3,Leucht Stefan2,Chaimani Anna1

Affiliation:

1. Center of Research in Epidemiology and Statistics (CRESS‐U1153), Université Paris Cité, INSERM Paris France

2. Department of Psychiatry and Psychotherapy, School of Medicine Technical University of Munich Munchen Germany

3. MRC Clinical Trials Unit University College London London UK

Abstract

AbstractNetwork meta‐analysis (NMA) usually provides estimates of the relative effects with the highest possible precision. However, sparse networks with few available studies and limited direct evidence can arise, threatening the robustness and reliability of NMA estimates. In these cases, the limited amount of available information can hamper the formal evaluation of the underlying NMA assumptions of transitivity and consistency. In addition, NMA estimates from sparse networks are expected to be imprecise and possibly biased as they rely on large‐sample approximations that are invalid in the absence of sufficient data. We propose a Bayesian framework that allows sharing of information between two networks that pertain to different population subgroups. Specifically, we use the results from a subgroup with a lot of direct evidence (a dense network) to construct informative priors for the relative effects in the target subgroup (a sparse network). This is a two‐stage approach where at the first stage, we extrapolate the results of the dense network to those expected from the sparse network. This takes place by using a modified hierarchical NMA model where we add a location parameter that shifts the distribution of the relative effects to make them applicable to the target population. At the second stage, these extrapolated results are used as prior information for the sparse network. We illustrate our approach through a motivating example of psychiatric patients. Our approach results in more precise and robust estimates of the relative effects and can adequately inform clinical practice in presence of sparse networks.

Funder

Agence Nationale de la Recherche

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3