Structural, optical, and dielectric characteristics of chitosan/hydroxypropyl cellulose‐modified copper vanadate nanoparticles

Author:

Al‐kalali N. A.12ORCID,Abdelghany A. M.34,Bin Anooz S.2,Abdelaziz M.1,Oraby A. H.1

Affiliation:

1. Physics Department, Faculty of Science Mansoura University Mansoura Egypt

2. Physics Department, Faculty of Science Hadhramout University Mukalla Yemen

3. Spectroscopy Department, Physics Division National Research Center Cairo Egypt

4. Basic Science Department Horus University Damietta Egypt

Abstract

AbstractChitosan (Cs) and hydroxypropyl cellulose (HPC) blend films were created and incorporated with copper vanadate nanoparticles. The films were characterized using various techniques, including x‐ray diffraction (XRD), attenuated total reflectance‐Fourier transform infrared (ATR‐FTIR), TEM, SEM, UV/vis spectroscopy, dielectric properties, and AC conductivity. The XRD analysis showed that the prepared films had amorphous characteristics. FT‐IR spectra indicated interactions between the Cs/HPC virgin polymers and copper vanadate nanoparticles. TEM analysis showed that the most prevalent size range of the nanoparticles was 20–60 nm. SEM micrographs revealed surface homogeneity at lower copper vanadate nanoparticle contents but increased inhomogeneity with higher contents. The prepared films showed a decrease in the optical energy gap and an increase in refractive index with increasing copper vanadate nanoparticle content. Copper vanadate nanoparticles enhance AC conductivity in Cs/HPC polymer blend. Dielectric analysis proved the suitability of the films for electroactive polymer applications.Highlights The casting process was used to prepare Cs/HPC—copper vanadate NPs films. XRD shows increased amorphousness post‐addition of copper vanadate NPs. SEM images revealed an increase in inhomogeneity with higher contents of copper vanadate NPs. The optical band gap decreased as the content of copper vanadate NPs increased. Copper vanadate nanoparticles greatly improve electrical conductivity and relaxation time.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Materials Chemistry,Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3