Affiliation:
1. Department of Biomedical Engineering College of Future Technology National Biomedical Imaging Center Peking University Beijing China
2. Department of Ultrasound Beijing Friendship Hospital Capital Medical University Beijing China
Abstract
AbstractIncreasing evidence suggests that intratumoral microbiota plays a pivotal role in tumor progression, immunosurveillance, metastasis, and chemosensitivity. Particularly, in pancreatic ductal adenocarcinoma, tumor‐resident Gammaproteobacteria could transform the chemotherapeutic drug gemcitabine (Gem) into its inactive form, thus rendering chemotherapy ineffective. Herein, a strategy for selectively eradicating intratumoral bacteria was described for overcoming Gem resistance in a pancreatic cancer animal model. An antimicrobial peptide was linked with photosensitizer through a poly (ethylene glycol) chain, which can self‐assemble into micelles with a diameter of ∼20 nm. The micelles could efficiently kill bacteria under light irradiation by inducing membrane depolarization, thereby inhibiting Gem metabolism. In a bacteria‐resident pancreatic cancer animal model, the selective photodynamic eradication of intratumoral bacteria was demonstrated to efficiently reverse Gem resistance. This research highlights antibacterial photodynamic therapy as a promising adjuvant strategy for cancer therapy by modulating intratumoral microbiota.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
General Medicine,General Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献