Relative Effects of Radiation‐Induced Changes in Bone Mass, Structure, and Tissue Material on Vertebral Strength in a Rat Model

Author:

Emerzian Shannon R1ORCID,Wu Tongge1,Vaidya Rachana2ORCID,Tang Simon Y234,Abergel Rebecca J5,Keaveny Tony M16

Affiliation:

1. Department of Mechanical Engineering University of California Berkeley CA USA

2. Department of Orthopaedic Surgery Washington University St. Louis MO USA

3. Department of Biomedical Engineering Washington University St. Louis MO USA

4. Department of Material Science & Mechanical Engineering Washington University St. Louis MO USA

5. Department of Nuclear Engineering University of California Berkeley CA USA

6. Department of Bioengineering University of California Berkeley CA USA

Abstract

ABSTRACTThe observed increased risk of fracture after cancer radiation therapy is presumably due to a radiation‐induced reduction in whole‐bone strength. However, the mechanisms for impaired strength remain unclear, as the increased fracture risk is not fully explained by changes in bone mass. To provide insight, a small animal model was used to determine how much of this whole‐bone weakening effect for the spine is attributable to changes in bone mass, structure, and material properties of the bone tissue and their relative effects. Further, because women have a greater risk of fracture after radiation therapy than men, we investigated if sex had a significant influence on bone's response to irradiation. Fractionated in vivo irradiation (10 × 3 Gy) or sham irradiation (0 Gy) was administered daily to the lumbar spine in twenty‐seven 17‐week‐old Sprague–Dawley rats (n = 6–7/sex/group). Twelve weeks after final treatment, animals were euthanized, and lumbar vertebrae (L4and L5) were isolated. Using a combination of biomechanical testing, micro‐CT‐based finite element analysis, and statistical regression analysis, we separated out the effect of mass, structural, and tissue material changes on vertebral strength. Compared with the sham group (mean ± SD strength = 420 ± 88 N), the mean strength of the irradiated group was lower by 28% (117 N/420 N,p < 0.0001). Overall, the response of treatment did not differ with sex. By combining results from both general linear regression and finite element analyses, we calculated that mean changes in bone mass, structure, and material properties of the bone tissue accounted for 56% (66 N/117 N), 20% (23 N/117 N), and 24% (28 N/117 N), respectively, of the overall change in strength. As such, these results provide insight into why an elevated clinical fracture risk for patients undergoing radiation therapy is not well explained by changes in bone mass alone. © 2023 The Authors.Journal of Bone and Mineral Researchpublished by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).

Funder

National Institutes of Health

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Orthopedics and Sports Medicine,Endocrinology, Diabetes and Metabolism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3