From statistical‐ to machine learning‐based network traffic prediction
Author:
Affiliation:
1. Faculty of Computer Sciences Østfold University College Halden Norway
2. Department of Informatics University of Oslo Oslo Norway
3. School of Computer Science University College Dublin Dublin Ireland
Publisher
Wiley
Subject
Electrical and Electronic Engineering
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.4394
Reference91 articles.
1. ShahrakiA AbbasiM dePiranM ChenM CuiS.A comprehensive survey on 6g networks: applications core services enabling technologies and future challenges; 2021. arXiv preprint arXiv:2101.12475.
2. A survey and future directions on clustering: from WSNs to IoT and modern networking paradigms;Shahraki A;IEEE Trans Netw Serv Manag,2020
3. ShahrakiA KaffashDK HaugenO.A review on the effects of IoT and smart cities technologies on urbanism. Proceedings of the 2018 South‐Eastern European Design Automation Computer Engineering Computer Networks and Society Media Conference (SEEDA_CECNSM); 2018:1‐8.
4. HorwitzL.The future of IoT miniguide: the burgeoning IoT market continues Technical report. CISCO San Jose CA; 2019.
5. A comparative node evaluation model for highly heterogeneous massive‐scale Internet of Things‐Mist networks
Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A computationally intelligent framework for traffic engineering and congestion management in software-defined network (SDN);EURASIP Journal on Wireless Communications and Networking;2024-08-19
2. A novel graph convolutional networks model for an intelligent network traffic analysis and classification;International Journal of Information Technology;2024-08-14
3. Predicting Network Traffic Flow with a Multi-Layer Short-Term Memory Model;Morganton Scientific;2024-06-27
4. Progress of Photovoltaic DC Fault Arc Detection Based on VOSviewer Bibliometric Analysis;Energies;2024-05-21
5. A deep learning based communication traffic prediction approach for smart monitoring of distributed energy resources in virtual power plants;IET Smart Grid;2024-05-17
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3