A data model for enabling deep learning practices on discovery services of cyber‐physical systems

Author:

Llopis Juan Alberto1ORCID,Fernández‐García Antonio Jesús2ORCID,Criado Javier1ORCID,Iribarne Luis1ORCID,Corral Antonio1ORCID

Affiliation:

1. Applied Computing Group (TIC‐211) University of Almería Almería Spain

2. Escuela Superior de Ingeniería y Tecnología Universidad Internacional de La Rioja Logroño Spain

Abstract

AbstractThe W3C Web of Things (WoT) is a leading technology that facilitates dynamic information management in the Internet of Things (IoT). In most IoT scenarios, devices and their associated information change continuously, generating a large amount of data. Hence, to correctly use the information and the data generated by different devices, a new perspective of managing and ensuring data quality is recommended. Applying Data Science techniques to create the data model can help to manage and ensure data quality by creating a common schema that can be reused in future projects, as well as producing recommendations to facilitate Service Discovery. In addition, due to the dynamic devices that change over time or under specific circumstances, the data model created must be sufficiently abstract to add new instances and to support new requirements that devices should incorporate. The use of models helps to raise the abstraction level, adapting it to the continuous changes of devices by defining instances associated with the data model. This paper proposes two data models: one for Cyber‐Physical Systems (CPS) to define device information fetched by a Discovery Service, and another for applying Deep Learning in natural language problems through a Transformer approach. The latter matches user queries in natural language sentences with WoT devices or services. These data models expand the Thing Description model to help find similar CPSs by giving a confidence level to each CPS based on features such as security and the number of times the device was accessed. The results show how the proposed models support the search process of CPSs in syntactic and natural language searches. Furthermore, the four levels of the FAIR principles are validated for the proposed data models, thus ensuring the data's transparency, reproducibility, and reusability.

Funder

European Regional Development Fund

Ministerio de Ciencia, Innovación y Universidades

Junta de Andalucía

Publisher

Wiley

Reference42 articles.

1. Big Data Analysis of Internet of Things System

2. Exceeding human limits

3. HartmannM HaleckerB.Management of innovation in the industrial internet of things. ISPIM Conference Proceedings.20151‐17.

4. The Cyber-Physical Systems Revolution

5. Introduction to the Special Section on Data Science for Cyber-Physical Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3