Representation of the inferred relationships in a map‐like space

Author:

Li Jinhui1,Liang Qunjun1,Liao Jiajun1,Zheng Senning1,Chen Kemeng1,Huang Ruiwang1ORCID

Affiliation:

1. School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational Science South China Normal University Guangzhou China

Abstract

AbstractA cognitive map is an internal representation of the external world that guides flexible behavior in a complex environment. Cognitive map theory assumes that relationships between entities can be organized using Euclidean‐based coordinates. Previous studies revealed that cognitive map theory can also be generalized to inferences about abstract spaces, such as social spaces. However, it is still unclear whether humans can construct a cognitive map by combining relational knowledge between discrete entities with multiple abstract dimensions in nonsocial spaces. Here we asked subjects to learn to navigate a novel object space defined by two feature dimensions, price and abstraction. The subjects first learned the rank relationships between objects in each feature dimension and then completed a transitive inferences task. We recorded brain activity using functional magnetic resonance imaging (fMRI) while they performed the transitive inference task. By analyzing the behavioral data, we found that the Euclidean distance between objects had a significant effect on response time (RT). The longer the one‐dimensional rank distance and two‐dimensional (2D) Euclidean distance between objects the shorter the RT. The task‐fMRI data were analyzed using both univariate analysis and representational similarity analysis. We found that the hippocampus, entorhinal cortex, and medial orbitofrontal cortex were able to represent the Euclidean distance between objects in 2D space. Our findings suggest that relationship inferences between discrete objects can be made in a 2D nonsocial space and that the neural basis of this inference is related to cognitive maps.

Funder

National Science Foundation

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3