Affiliation:
1. Forschungszentrum Jülich, Institute of Neuroscience and Medicine–4 Jülich Germany
2. Forschungszentrum Jülich, Institute of Neuroscience and Medicine–11 Jülich Germany
3. Department of Psychiatry, Psychotherapy and Psychosomatics RWTH Aachen University Aachen Germany
4. RWTH Aachen University Aachen Germany
5. JARA–BRAIN–Translational Medicine Aachen Germany
6. Department of Neurology RWTH Aachen University Aachen Germany
Abstract
AbstractPurposeTo introduce quantitative rapid gradient‐echo (QRAGE), a novel approach for the simultaneous mapping of multiple quantitative MRI parameters, including water content, T1, T2*, and magnetic susceptibility at ultrahigh field strength.MethodsQRAGE leverages a newly developed multi‐echo MPnRAGE sequence, facilitating the acquisition of 171 distinct contrast images across a range of inversion and TE points. To maintain a short acquisition time, we introduce MIRAGE2, a novel model‐based reconstruction method that exploits prior knowledge of temporal signal evolution, represented as damped complex exponentials. MIRAGE2 minimizes local Block‐Hankel and Casorati matrices. Parameter maps are derived from the reconstructed contrast images through postprocessing steps. We validate QRAGE through extensive simulations, phantom studies, and in vivo experiments, demonstrating its capability for high‐precision imaging.ResultsIn vivo brain measurements show the promising performance of QRAGE, with test–retest SDs and deviations from reference methods of < 0.8% for water content, < 17 ms for T1, and < 0.7 ms for T2*. QRAGE achieves whole‐brain coverage at a 1‐mm isotropic resolution in just 7 min and 15 s, comparable to the acquisition time of an MP2RAGE scan. In addition, QRAGE generates a contrast image akin to the UNI image produced by MP2RAGE.ConclusionQRAGE is a new, successful approach for simultaneously mapping multiple MR parameters at ultrahigh field.
Funder
Deutsche Forschungsgemeinschaft