Recurrent debris flows and their downstream fate: Geomorphic drivers of an anomalous sediment load, Suiattle River, Washington State, USA

Author:

Fordham Edward M.1ORCID,Pfeiffer Allison M.2ORCID,Bunn Andrew G.3ORCID,Novak Stephen J.2

Affiliation:

1. Northwest Hydraulic Consultants Inc Seattle WA USA

2. Department of Geology Western Washington University Bellingham WA USA

3. Department of Environmental Sciences Western Washington University Bellingham WA USA

Abstract

AbstractAlpine mass wasting events have impacts that extend past their headwater origins, sometimes reaching populated lowlands. Understanding the processes driving these sediment pulses, and how they contribute to basin‐scale sediment fluxes, is important for hazard assessment and aquatic habitat management. The Suiattle River, which drains Glacier Peak stratovolcano in Washington State, is a dominant contributor of suspended sediment in the region. Normalized for drainage area, it supplies more suspended sediment than nearly any other river in the area and more than twice as much as the White Chuck River, which drains the opposite flank of the volcano. Despite its importance to the regional sediment budget, geomorphic processes in the basin have received relatively little attention in the literature. In this study, we build on previous work to explore the magnitude, timing and triggering mechanisms of sediment loading events in the basin. We find that outburst flood‐triggered debris flows from Chocolate Glacier are of widely varying magnitude and coincide with high temperatures in the late summer. Major debris flow activity initiated in the late 1930s, with at least eight valley‐filling debris flows since then. Smaller, more recent debris flows, likely also driven by outburst floods, occur in five of seven years of complete data. In total, the small debris flows and the subsequent autumn flushing events explain ~21% of the ‘anomalous’ sediment load in the basin, while reworking and abrasion of the historic events may explain another ~26%. We speculate that some of the remaining unexplained ‘anomalous’ load could be the result of a feedback between channel lateral instability (originally triggered by the valley‐spanning debris flows) and bluff erosion.

Funder

AEG Foundation

Geological Society of America

Western Washington University

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Earth-Surface Processes,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3