Integrated network pharmacology and metabolomics analyses of the mechanism underlying the efficacy of Ma‐Mu‐Ran Antidiarrheal Capsules against dextran sulfate sodium–induced ulcerative colitis

Author:

Huang Hailing1ORCID,Duan Bailu2,Zheng Sili1,Ye Yan1,Zhang Dongning1,Huang Zhuang1,Wang Shanshan1,Zhang Fengyun1,Huang Ping2,Huang Fang2,Han Lintao13

Affiliation:

1. College of Pharmacy Hubei University of Chinese Medicine Wuhan China

2. College of Basic Medicine Hubei University of Chinese Medicine Wuhan China

3. Key Laboratory of Chinese Medicine Resources and Compound Chinese Medicine, Ministry of Education Hubei University of Chinese Medicine Wuhan China

Abstract

AbstractThe current study utilizes a comprehensive network pharmacology and metabolomics analysis to investigate the mechanism of action of Ma‐Mu‐Ran Antidiarrheal Capsules (MMRAC) for the treatment of ulcerative colitis (UC). In this study, we established a mouse model of UC using dextran sulfate sodium. Colonic tissues were collected from mice and then subjected to hematoxylin and eosin staining, as well as histopathological analysis, to assess the therapeutic effect of MMRAC. Furthermore, we assessed the mechanisms through which MMRAC combats UC by employing integrated metabolomics and network pharmacology strategies. Lastly, we validated the key targets identified through western blot and molecular docking. An integrated network of metabolomics and network pharmacology was constructed using Cytoscape to identify eight endogenous metabolites involved in the therapeutic action of MMRAC on UC. Further comprehensive analyses were focused on four key targets and their associated core metabolites and pathways. The results of western blot and molecular docking demonstrated that MMRAC could modulate key targets and their expression levels. The cumulative results indicated that MMRAC restored intestinal function in UC, reduced inflammatory responses, and alleviated oxidative stress by influencing the methionine and cysteine metabolic pathways, as well as the urea cycle. In addition, it had an impact on arginine, proline, glutamate, aspartate, and asparagine metabolic pathways and their associated targets.

Publisher

Wiley

Subject

Clinical Biochemistry,Drug Discovery,Pharmacology,Molecular Biology,General Medicine,Biochemistry,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3